中国电力 ›› 2023, Vol. 56 ›› Issue (11): 20-28.DOI: 10.11930/j.issn.1004-9649.202209065
王朝辉1(), 黄松阁2(
), 林斌2, 陈雨薇2, 范淑敏2, 施朝晖2
收稿日期:
2022-09-30
接受日期:
2023-01-28
出版日期:
2023-11-28
发布日期:
2023-11-28
作者简介:
王朝辉 (1967—),男,高级工程师(教授级),从事风力发电技术、新能源发电及并网技术研究,E-mail: 13910624568@163.com基金资助:
Chaohui WANG1(), Songge HUANG2(
), Bin LIN2, Yuwei CHEN2, Shumin FAN2, Zhaohui SHI2
Received:
2022-09-30
Accepted:
2023-01-28
Online:
2023-11-28
Published:
2023-11-28
Supported by:
摘要:
海上风电场集电系统最大海缆截面选定拓扑优化设计是降低海上风电场总投资、提高传输效率及系统可靠性的有效手段。由于集电系统汇集网拓扑结构存在多种方式,且过往优化研究中并未考虑最大海缆截面约束条件,导致集电系统拓扑在非凸非线性寻优过程中效率低,难以获得全局最优的布局方案。提出了基于海上风电场区66 kV集电系统海缆最大截面经济性分析方法,在通过单亲遗传算法和最小生成树技术(MST)进行集电系统拓扑优化过程中加入了最优海缆最大截面选型的约束条件,减少搜索空间,提高寻优精度,加快搜索速度。算例分析结果表明,在集电系统规划中考虑海缆最大截面选型约束对经济性优化结果具有显著影响。
王朝辉, 黄松阁, 林斌, 陈雨薇, 范淑敏, 施朝晖. 基于海上风电场区66 kV集电系统海缆最大截面经济性分析[J]. 中国电力, 2023, 56(11): 20-28.
Chaohui WANG, Songge HUANG, Bin LIN, Yuwei CHEN, Shumin FAN, Zhaohui SHI. Economic Analysis of Maximum Cross-Section of Submarine Cables for 66 kV Offshore Wind Farm Collection Systems[J]. Electric Power, 2023, 56(11): 20-28.
海缆规格/mm2 | 载流量/A | 价格/(万元·km–1) | ||
3×95 | 302 | 186.81 | ||
3×120 | 341 | 201.04 | ||
3×150 | 379 | 216.03 | ||
3×185 | 423 | 235.62 | ||
3×240 | 483 | 261.87 | ||
3×300 | 533 | 292.79 | ||
3×400 | 591 | 340.01 | ||
3×500 | 649 | 391.60 | ||
3×630 | 705 | 460.60 | ||
3×800 | 753 | 544.00 | ||
3×1000 | 791 | 648.56 | ||
3×1200 | 812 | 736.80 | ||
3×1400 | 833 | 845.99 |
表 1 66 kV海缆型号、载流量及价格
Table 1 66 kV submarine cable type, ampacity and unit price
海缆规格/mm2 | 载流量/A | 价格/(万元·km–1) | ||
3×95 | 302 | 186.81 | ||
3×120 | 341 | 201.04 | ||
3×150 | 379 | 216.03 | ||
3×185 | 423 | 235.62 | ||
3×240 | 483 | 261.87 | ||
3×300 | 533 | 292.79 | ||
3×400 | 591 | 340.01 | ||
3×500 | 649 | 391.60 | ||
3×630 | 705 | 460.60 | ||
3×800 | 753 | 544.00 | ||
3×1000 | 791 | 648.56 | ||
3×1200 | 812 | 736.80 | ||
3×1400 | 833 | 845.99 |
方案 | 海缆截面选择/ mm2 | 总回路数 | 总长/ km | 海缆总费用/ 亿元 | 海缆损耗现值/ 亿元 | 海域使用费/ 亿元 | 66 kV风机 进线柜 总费用/ 亿元 | 综合造价/ 亿元 | ||||||||
1 | 38/66 kV 3×95~ 3×300 | 6 | 51.1 | 1.1348 | 0.2395 | 0.0890 | 0.0480 | 1.5113 | ||||||||
2 | 38/66 kV 3×95~ 3×500 | 5 | 52.0 | 1.2639 | 0.2646 | 0.0907 | 0.0400 | 1.6592 | ||||||||
3 | 38/66 kV 3×95~ 3×800 | 4 | 43.5 | 1.2665 | 0.2288 | 0.0735 | 0.0320 | 1.6008 |
表 2 300 MW风电场集电系统海缆最大截面方案综合经济明细
Table 2 Economic analysis of the maximum cross-section of submarine cables for 300 MW wind farm collection systems
方案 | 海缆截面选择/ mm2 | 总回路数 | 总长/ km | 海缆总费用/ 亿元 | 海缆损耗现值/ 亿元 | 海域使用费/ 亿元 | 66 kV风机 进线柜 总费用/ 亿元 | 综合造价/ 亿元 | ||||||||
1 | 38/66 kV 3×95~ 3×300 | 6 | 51.1 | 1.1348 | 0.2395 | 0.0890 | 0.0480 | 1.5113 | ||||||||
2 | 38/66 kV 3×95~ 3×500 | 5 | 52.0 | 1.2639 | 0.2646 | 0.0907 | 0.0400 | 1.6592 | ||||||||
3 | 38/66 kV 3×95~ 3×800 | 4 | 43.5 | 1.2665 | 0.2288 | 0.0735 | 0.0320 | 1.6008 |
方案 | 38/66 kV海缆截面 选择/mm2 | 总回路数 | 总长/km | 海缆费用/亿元 | 海缆损耗现值/ 亿元 | 海域使用费/亿元 | 66 kV风机进线柜 总费用/亿元 | 综合造价/亿元 | ||||||||
1 | 3×95~3×300 | 9 | 85.7 | 2.0333 | 0.4344 | 0.1499 | 0.0720 | 2.6896 | ||||||||
2 | 3×95~3×500 | 8 | 78.7 | 2.0049 | 0.4240 | 0.1358 | 0.0640 | 2.6287 | ||||||||
3 | 3×95~3×800 | 7 | 76.8 | 2.2212 | 0.3843 | 0.1321 | 0.0560 | 2.7936 | ||||||||
4 | 3×95~3×1400 | 6 | 77.4 | 2.6897 | 0.3751 | 0.1332 | 0.0480 | 3.2459 |
表 3 500 MW风电场集电系统海缆最大截面方案综合经济明细
Table 3 Economic analysis of the maximum cross-section of submarine cables for 500 MW wind farm collection systems
方案 | 38/66 kV海缆截面 选择/mm2 | 总回路数 | 总长/km | 海缆费用/亿元 | 海缆损耗现值/ 亿元 | 海域使用费/亿元 | 66 kV风机进线柜 总费用/亿元 | 综合造价/亿元 | ||||||||
1 | 3×95~3×300 | 9 | 85.7 | 2.0333 | 0.4344 | 0.1499 | 0.0720 | 2.6896 | ||||||||
2 | 3×95~3×500 | 8 | 78.7 | 2.0049 | 0.4240 | 0.1358 | 0.0640 | 2.6287 | ||||||||
3 | 3×95~3×800 | 7 | 76.8 | 2.2212 | 0.3843 | 0.1321 | 0.0560 | 2.7936 | ||||||||
4 | 3×95~3×1400 | 6 | 77.4 | 2.6897 | 0.3751 | 0.1332 | 0.0480 | 3.2459 |
方案 | 38/66 kV海缆截面 选择/mm2 | 总回路数 | 总长/km | 海缆总费用/亿元 | 海缆损耗现值/ 亿元 | 海域使用费/亿元 | 66 kV风机进线柜 总费用/亿元 | 综合造价/亿元 | ||||||||
1 | 3×95~3×300 | 18 | 186.6 | 4.6068 | 1.0122 | 0.3302 | 0.1440 | 6.0931 | ||||||||
2 | 3×95~3×500 | 15 | 169.6 | 4.8642 | 0.9171 | 0.2962 | 0.1200 | 6.1975 | ||||||||
3 | 3×95~3×800 | 13 | 157.8 | 5.3748 | 0.8494 | 0.2731 | 0.1040 | 6.6013 | ||||||||
4 | 3×95~3×1400 | 12 | 159.3 | 6.2127 | 0.8369 | 0.2761 | 0.0960 | 7.4217 |
表 4 1000 MW风电场集电系统海缆最大截面方案综合经济明细
Table 4 Economic analysis of the maximum cross-section of submarine cables for 1000 MW wind farm collection systems
方案 | 38/66 kV海缆截面 选择/mm2 | 总回路数 | 总长/km | 海缆总费用/亿元 | 海缆损耗现值/ 亿元 | 海域使用费/亿元 | 66 kV风机进线柜 总费用/亿元 | 综合造价/亿元 | ||||||||
1 | 3×95~3×300 | 18 | 186.6 | 4.6068 | 1.0122 | 0.3302 | 0.1440 | 6.0931 | ||||||||
2 | 3×95~3×500 | 15 | 169.6 | 4.8642 | 0.9171 | 0.2962 | 0.1200 | 6.1975 | ||||||||
3 | 3×95~3×800 | 13 | 157.8 | 5.3748 | 0.8494 | 0.2731 | 0.1040 | 6.6013 | ||||||||
4 | 3×95~3×1400 | 12 | 159.3 | 6.2127 | 0.8369 | 0.2761 | 0.0960 | 7.4217 |
1 | LIU D N, LIU M G, XU X F, et al. Future prospects research on offshore wind power scale in China based on signal decomposition and extreme learning machine optimized by principal component analysis[J]. Energy Science & Engineering, 2020, 8 (10): 3514- 3530. |
2 | Global Wind Energy Council. Global wind statistics 2022[EB/OL]. http://www.gwec.net, 2022. |
3 | Global Wind Energy Council. Global wind statistics 2021[EB/OL]. http://www.gwec.net, 2021. |
4 | 廖修谱, 周全, 李磊, 等. 一种适用于远海风电直流汇集送出换流阀的拓扑及其技术经济性分析[J]. 中国电力, 2022, 55 (6): 118- 127. |
LIAO Xiupu, ZHOU Quan, LI Lei, et al. A feasible topology of DC collection valve for long-distance offshore wind farms and cost-effective analysis[J]. Electric Power, 2022, 55 (6): 118- 127. | |
5 | 王宇, 许卫东, 张盼盼. 海上风电场66 kV集电系统研究[J]. 山东电力技术, 2022, 49 (4): 75- 80. |
WANG Yu, XU Weidong, ZHANG Panpan. Study on 66 kV power collection system of offshore wind farm[J]. Shandong Electric Power, 2022, 49 (4): 75- 80. | |
6 | 王峰, 芮守娟, 王小合, 等. 66 kV海上风电交流集电方案的研究与发展前景[J]. 华电技术, 2020, 42 (5): 61- 65. |
WANG Feng, RUI Shoujuan, WANG Xiaohe, et al. Research and prospects of 66 kV offshore wind power AC collection scheme[J]. Huadian Technology, 2020, 42 (5): 61- 65. | |
7 |
许新鑫, 赵陆尧. 探究66 kV集电海缆在我国大型海上风电项目中的应用[J]. 机电信息, 2019, (30): 23- 24.
DOI |
8 | 杨光亚. 欧洲海上风电工程实践回顾及未来技术展望[J]. 电力系统自动化, 2021, 45 (21): 23- 32. |
YANG Guangya. Review on engineering practices and future technology prospects of European offshore wind power[J]. Automation of Electric Power Systems, 2021, 45 (21): 23- 32. | |
9 | 黄明煌, 王秀丽, 刘沈全, 等. 分频输电应用于深远海风电并网的技术经济性分析[J]. 电力系统自动化, 2019, 43 (5): 167- 174. |
HUANG Minghuang, WANG Xiuli, LIU Shenquan, et al. Technical and economic analysis on fractional frequency transmission system for integration of long-distance offshore wind farm[J]. Automation of Electric Power Systems, 2019, 43 (5): 167- 174. | |
10 | 蔡蓉, 张立波, 程濛, 等. 66kV海上风电交流集电方案技术经济性研究[J]. 全球能源互联网, 2019, 2 (2): 155- 162. |
CAI Rong, ZHANG Libo, CHENG Meng, et al. Technical and economic research on 66 kV offshore wind power AC collection solution[J]. Journal of Global Energy Interconnection, 2019, 2 (2): 155- 162. | |
11 | 孙瑞娟, ABEYNAYAKE Gayan, 穆清, 等. 基于通用生成函数的海上风电集电系统可靠性与经济性评估[J]. 电力系统自动化, 2022, 46 (5): 159- 173. |
SUN Ruijuan, ABEYNAYAKE G, MU Qing, et al. Reliability and economic evaluation of offshore wind power collection system based on universal generating function[J]. Automation of Electric Power Systems, 2022, 46 (5): 159- 173. | |
12 | 吴迪. 如何优化海缆布局, 节省千万元成本?[J]. 风能, 2021, 42 (6): 105- 115. |
13 | 叶婧, 周广浩, 张磊, 等. 考虑馈线交叉规避的海上风电场海缆路径优化[J]. 中国电力, 2023, 56 (6): 167- 175. |
YE Jing, ZHOU Guanghao, ZHANG Lei, et al. Path optimization of submarine cables for offshore wind farm considering feeder crossing avoidance[J]. Electric Power, 2023, 56 (6): 167- 175. | |
14 | 孙艳霞, 方是文, 李震. 海上风电经交流电缆汇集送出系统暂态无功电压建模及特性分析[J]. 中国电力, 2022, 55 (4): 166- 174. |
SUN Yanxia, FANG Shiwen, LI Zhen. Transient voltage-reactive power modeling of offshore wind power collection and transmission system with AC cables and characteristic analysis[J]. Electric Power, 2022, 55 (4): 166- 174. | |
15 |
WEI S R, FENG Y Y, LIU K L, et al. Optimization of power collector system for large-scale offshore wind farm based on topological redundancy assessment[J]. E3S Web of Conferences, 2020, 194, 03025.
DOI |
16 |
HOU P, HU W H, SOLTANI M, et al. Optimized placement of wind turbines in large-scale offshore wind farm using particle swarm optimization algorithm[J]. IEEE Transactions on Sustainable Energy, 2015, 6 (4): 1272- 1282.
DOI |
17 | 牛东晓, 赵东来, 杨尚东, 等. 基于改进粒子群算法的海上风电汇集方式与并网优化研究[J]. 中南大学学报(自然科学版), 2019, 50 (12): 3146- 3155. |
NIU Dongxiao, ZHAO Donglai, YANG Shangdong, et al. Research on convergence mode and grid-connected optimization of offshore wind power based on improved particle swarm optimization algorithm[J]. Journal of Central South University (Science and Technology), 2019, 50 (12): 3146- 3155. | |
18 |
戚远航, 侯鹏, 金荣森. 基于Q学习粒子群算法的海上风电场电气系统拓扑优化[J]. 电力系统自动化, 2021, 45 (21): 66- 75.
DOI |
QI Yuanhang, HOU Peng, JIN Rongsen. Optimization of electrical system topology for offshore wind farm based on Q-learning particle swarm optimization algorithm[J]. Automation of Electric Power Systems, 2021, 45 (21): 66- 75.
DOI |
|
19 |
魏书荣, 刘昆仑, 符杨, 等. 基于拓扑冗余度评估的大型海上风电场集电系统优化[J]. 电力系统自动化, 2018, 42 (18): 84- 90.
DOI |
WEI Shurong, LIU Kunlun, FU Yang, et al. Optimization of power collector system for large-scale offshore wind farm based on topological redundancy assessment[J]. Automation of Electric Power Systems, 2018, 42 (18): 84- 90.
DOI |
|
20 |
DAHMANI O, BOURGUET S, MACHMOUM M, et al. Optimization and reliability evaluation of an offshore wind farm architecture[J]. IEEE Transactions on Sustainable Energy, 2017, 8 (2): 542- 550.
DOI |
21 |
PÉREZ-RÚA J A, CUTULULIS N A. Electrical cable optimization in offshore wind farms—a review[J]. IEEE Access, 2019, 7, 85796- 85811.
DOI |
22 | 中国电力企业联合会. 电力工程电缆设计标准: GB 50217—2018[S]. 北京:中国计划出版社,2018. |
[1] | 叶婧, 蔡俊文, 张磊, 周广浩, 何杰辉, 翟学. 考虑海缆实际载流量的海上风电集电系统拓扑优化[J]. 中国电力, 2024, 57(7): 173-181. |
[2] | 叶婧, 周广浩, 张磊, 杨莉, 翟学, 蔡俊文. 考虑馈线交叉规避的海上风电场海缆路径优化[J]. 中国电力, 2023, 56(6): 167-175. |
[3] | 杨源, 阳熹, 谭江平, 陈亮, 辛妍丽, 陈夏. 海上风电场无功配置优化方案[J]. 中国电力, 2020, 53(11): 195-201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||