[1] 国家能源局. 完善电力辅助服务补偿(市场)机制工作方案[Z]. 2017. [2] 华中能源监管局. 川渝一体化电力调峰辅助服务市场运营规则(试行)[Z]. 2021. [3] 林俐, 邹兰青, 周鹏, 等. 规模风电并网条件下火电机组深度调峰的多角度经济性分析[J]. 电力系统自动化, 2017, 41(7): 21–27 LIN Li, ZOU Lanqing, ZHOU Peng, et al. Multi-angle economic analysis on deep peak regulation of thermal power units with large-scale wind power integration[J]. Automation of Electric Power Systems, 2017, 41(7): 21–27 [4] 李铁, 李正文, 杨俊友, 等. 计及调峰主动性的风光水火储多能系统互补协调优化调度[J]. 电网技术, 2020, 44(10): 3622–3630 LI Tie, LI Zhengwen, YANG Junyou, et al. Coordination and optimal scheduling of multi-energy complementary system considering peak regulation initiative[J]. Power System Technology, 2020, 44(10): 3622–3630 [5] 林俐, 岳晓宇, 许冰倩, 等. 计及抽水蓄能和火电深度调峰效益的抽蓄–火电联合调峰调用顺序及策略[J]. 电网技术, 2021, 45(1): 20–32 LIN Li, YUE Xiaoyu, XU Bingqian, et al. Sequence and strategy of pumped storage-thermal combined peak shaving considering benefits of pumped storage and deep regulation of thermal power[J]. Power System Technology, 2021, 45(1): 20–32 [6] 李军徽, 张嘉辉, 穆钢, 等. 储能辅助火电机组深度调峰的分层优化调度[J]. 电网技术, 2019, 43(11): 3961–3970 LI Junhui, ZHANG Jiahui, MU Gang, et al. Hierarchical optimization scheduling of deep peak shaving for energy-storage auxiliary thermal power generating units[J]. Power System Technology, 2019, 43(11): 3961–3970 [7] 崔杨, 修志坚, 刘闯, 等. 计及需求响应与火–储深度调峰定价策略的电力系统双层优化调度[J]. 中国电机工程学报, 2021, 41(13): 4403–4415 CUI Yang, XIU Zhijian, LIU Chuang, et al. Dual level optimal dispatch of power system considering demand response and pricing strategy on deep peak regulation[J]. Proceedings of the CSEE, 2021, 41(13): 4403–4415 [8] 王淑云, 娄素华, 刘文霞, 等. 考虑火电深度调峰的电力系统低碳发电优化研究[J]. 全球能源互联网, 2019, 2(3): 226–231 WANG Shuyun, LOU Suhua, LIU Wenxia, et al. Study on optimization of low-carbon power generation in power system considering the depth peak regulation of thermal power units[J]. Journal of Global Energy Interconnection, 2019, 2(3): 226–231 [9] 刘赫川, 周孝信, 杨小煜, 等. 考虑天然气季节性存储的综合能源系统年度运行方式研究[J]. 中国电力, 2022, 55(4): 145–155 LIU Hechuan, ZHOU Xiaoxin, YANG Xiaoyu, et al. Annual operation mode study of integrated energy system considering seasonal natural gas storage[J]. Electric Power, 2022, 55(4): 145–155 [10] 张新城, 刘志珍, 侯延进, 等. 考虑出行温度影响的电动汽车充电功率需求分析[J]. 电力科学与技术学报, 2021, 36(4): 124–131 ZHANG Xincheng, LIU Zhizhen, HOU Yanjin, et al. Analysis of charging power demand of electric vehicles considering the influence of travel temperature[J]. Journal of Electric Power Science and Technology, 2021, 36(4): 124–131 [11] 邵随拓. 考虑水库月间协调的年度电力电量平衡方法研究[D]. 重庆: 重庆大学, 2019. SHAO Suituo. Study on annual power supply-demand balancing considering monthly reservoirs coordination[D]. Chongqing: Chongqing University, 2019. [12] 邵成成, 冯陈佳, 王雅楠, 等. 含大规模清洁能源电力系统的多时间尺度生产模拟[J]. 中国电机工程学报, 2020, 40(19): 6103–6113 SHAO Chengcheng, FENG Chenjia, WANG Yanan, et al. Multiple time-scale production simulation of power system with large-scale renewable energy[J]. Proceedings of the CSEE, 2020, 40(19): 6103–6113 [13] 林弋莎, 孙荣富, 鲁宗相, 等. 考虑中长期电量不确定性的可再生能源系统嵌套运行优化[J]. 电网技术, 2020, 44(9): 3272–3281 LIN Yisha, SUN Rongfu, LU Zongxiang, et al. Medium-and long-term nested scheduling for renewable energy system considering electricity uncertainty[J]. Power System Technology, 2020, 44(9): 3272–3281 [14] 仉梦林, 胡志坚, 王小飞, 等. 基于动态场景集和需求响应的二阶段随机规划调度模型[J]. 电力系统自动化, 2017, 41(11): 68–76 ZHANG Menglin, HU Zhijian, WANG Xiaofei, et al. Two-stage stochastic programming scheduling model based on dynamic scenario sets and demand response[J]. Automation of Electric Power Systems, 2017, 41(11): 68–76 [15] 白斌, 韩明亮, 林江, 等. 含风电和光伏的可再生能源场景削减方法[J]. 电力系统保护与控制, 2021, 49(15): 141–149 BAI Bin, HAN Mingliang, LIN Jiang, et al. Scenario reduction method of renewable energy including wind power and photovoltaic[J]. Power System Protection and Control, 2021, 49(15): 141–149 [16] XU J, YI X K, SUN Y Z, et al. Stochastic optimal scheduling based on scenario analysis for wind farms[J]. IEEE Transactions on Sustainable Energy, 2017, 8(4): 1548–1559. [17] 裘昕月, 朱自伟, 黄春辉, 等. 考虑风电出力不确定性的综合能源系统鲁棒优化[J]. 智慧电力, 2020, 48(5): 1–6,59 QIU Xinyue, ZHU Ziwei, HUANG Chunhui, et al. Robust optimization of integrated energy system considering uncertainty of wind power output[J]. Smart Power, 2020, 48(5): 1–6,59 [18] 郭尊, 李庚银, 周明, 等. 面向风电消纳的电–气联合系统分散协调鲁棒优化调度模型[J]. 中国电机工程学报, 2020, 40(20): 6442–6455 GUO Zun, LI Gengyin, ZHOU Ming, et al. A decentralized and robust optimal scheduling model of integrated electricity-gas system for wind power accommodation[J]. Proceedings of the CSEE, 2020, 40(20): 6442–6455 [19] ODETAYO B, KAZEMI M, MACCORMACK J, et al. A chance constrained programming approach to the integrated planning of electric power generation, natural gas network and storage[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6883–6893. [20] 李志伟, 赵书强, 刘金山. 基于机会约束目标规划的风-光-水-气-火-储联合优化调度[J]. 电力自动化设备, 2019, 39(8): 214–223 LI Zhiwei, ZHAO Shuqiang, LIU Jinshan. Coordinated optimal dispatch of wind-photovoltaic-hydro-gas-thermal-storage system based on chance-constrained goal programming[J]. Electric Power Automation Equipment, 2019, 39(8): 214–223 [21] 黄越辉, 曲凯, 李驰, 等. 基于K-means MCMC算法的中长期风电时间序列建模方法研究[J]. 电网技术, 2019, 43(7): 2469–2476 HUANG Yuehui, QU Kai, LI Chi, et al. Research on modeling method of medium-and long-term wind power time series based on K-means MCMC algorithm[J]. Power System Technology, 2019, 43(7): 2469–2476 [22] 陶新民, 徐晶, 杨立标, 等. 一种改进的粒子群和K均值混合聚类算法[J]. 电子与信息学报, 2010, 32(1): 92–97 TAO Xinmin, XU Jing, YANG Libiao, et al. Improved cluster algorithm based on K-means and particle swarm optimization[J]. Journal of Electronics & Information Technology, 2010, 32(1): 92–97 [23] 李辉, 任洲洋, 胡博, 等. 基于时序生成对抗网络的月度风光发电功率场景分析方法[J]. 中国电机工程学报, 2022, 42(2): 537–548 LI Hui, REN Zhouyang, HU Bo, et al. A sequential generative adversarial network based monthly scenario analysis method for wind and photovoltaic power[J]. Proceedings of the CSEE, 2022, 42(2): 537–548 [24] 国家能源局华中监管局, 重庆市经济和信息化委员会. 重庆电力辅助服务(调峰)交易规则[A]. 2019. [25] 张爱枫, 刘或让, 王勇, 等. 计及深度调峰辅助服务与多典型日的年度发电计划优化模型[J/OL]. 重庆大学学报: 1-15[2021-12-07]. http://kns.cnki.net/kcms/detail/50.1044.n.20211201.1034.002.html. ZHANG Aifeng, LIU Huorang, WANG Yong, et al. Annual power generation plan optimization model considering deep peak regulation auxiliary services and multiple typical days[J/OL]. Journal of Chongqing University. 1-15[2021-12-07]. http://kns.cnki.net/kcms/ detail/50.1044.n.20211201.1034.002.html. [26] 国家能源局华中监管局. 华中区域并网发电厂辅助服务管理实施细则[A]. 2020.
|