中国电力 ›› 2022, Vol. 55 ›› Issue (6): 9-17,24.DOI: 10.11930/j.issn.1004-9649.202201044

• 电网调度模型研究 • 上一篇    下一篇

基于多时间尺度随机优化的年度调峰辅助服务需求评估模型

刘或让1, 颜伟1, 林祖贵1, 谭洪1, 李国强2, 文旭3   

  1. 1. 重庆大学 输配电装备及系统安全与新技术国家重点实验室,重庆 400044;
    2. 西藏电力交易中心有限公司,西藏 拉萨 850000;
    3. 国家电网有限公司西南分部,四川 成都 610041
  • 收稿日期:2022-01-14 修回日期:2022-04-14 出版日期:2022-06-28 发布日期:2022-06-18
  • 作者简介:刘或让(1996—),男,硕士研究生,从事电力系统中长期优化调度、调峰辅助服务研究,E-mail:lhrang@sina.com;颜伟(1968—),男,通信作者,博士,教授,博士生导师,从事电力系统调度、交易与规划研究,E-mail:cquyanwei@cqu.edu.cn;林祖贵(1998—),男,硕士研究生,从事电力系统中长期运行与交易研究,E-mail:linzugui19@163.com;谭洪(1991—),男,博士研究生,从事电力系统与综合能源系统运行优化研究,E-mail:tan_hong@foxmail.com;文旭(1978—),男,博士,高级工程师,从事电力系统优化运行及风险评估、清洁能源消纳、能源互联网及电力市场运行与管理研究,E-mail:wenxu@cqu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51677012)。

An Annual Peak Regulation Auxiliary Service Demand Assessment Model Based on Multi-time Scale Stochastic Optimization

LIU Huorang1, YAN Wei1, LIN Zugui1, TAN Hong1, LI Guoqiang2, WEN Xu3   

  1. 1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China;
    2. Tibet Electric Power Trading Center Co., Ltd., Lhasa 850000, China;
    3. Southwest Branch of State Grid corporation of China, Chengdu 610041, China
  • Received:2022-01-14 Revised:2022-04-14 Online:2022-06-28 Published:2022-06-18
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.51677012)

摘要: 为探寻电力系统的年度调峰需求,构建了基于多时间尺度随机优化的年度调峰辅助服务需求评估模型。该优化模型包含中长期、短期以及调峰服务3个阶段:在中长期阶段考虑日电量与最大最小负荷的随机性及其平衡关系,优化机组检修、跨日启停及水库水位的中长期计划;在短期阶段考虑源荷小时功率平衡及其波动性,基于中长期计划逐旬优化机组出力;在调峰阶段通过分析日调峰能力与弃水情况实现对辅助服务启动条件的模拟,考虑火电机组深度调峰与启停调峰能力对短期阶段进行矫正优化。基于中国某省级电网实际数据的仿真分析结果表明,所提模型能有效模拟多时间尺度下的源荷随机性,实现年度调峰辅助服务的需求评估。

关键词: 调峰辅助服务市场, 年度发电计划, 多时间尺度优化, 随机优化, 需求评估

Abstract: In order to assess the annual peak regulation demand of power system, an annual peak regulation auxiliary service demand assessment model based on multi-time scale stochastic optimization is constructed, which covers three stages: the mid-and-long term stage, short term stage and peak regulation service stage. For the mid-and-long term stage, the randomness and the balance relationship of daily electricity, maximum and minimum load are considered to optimize the mid-and-long term plan for unit maintenance, cross-day start-stop and reservoir water level. For the short-term stage, the hourly power balance of source-load and its fluctuation is considered to optimize the units output on a ten-day basis according to the mid-and-long term plan. For the peak regulation stage, the start-up conditions of the auxiliary services are simulated through analyzing the daily peak regulation capacity and water curtailment, and the deep peak regulation and start-stop peak regulation capacity of thermal power units is considered to correct and optimize the short-term plan. Based on the actual data of a provincial power grid in China, a simulation analysis is conducted, which shows that the model can effectively simulate the randomness of source-load under multi-time scale, and realize the annual peak regulation demand assessment.

Key words: peak regulation auxiliary service market, annual power generation plan, multi-time scale optimization, stochastic optimization, demand assessment