[1] 栾乐, 马智远, 莫文雄, 等. 考虑不同敏感设备耐受特性的用户侧电压暂降严重程度区间评估方法[J]. 电力系统保护与控制, 2021, 49(2): 140–148 LUAN Le, MA Zhiyuan, MO Wenxiong, et al. Voltage sag severity interval assessment method for user side considering tolerance characteristics of equipment of differing sensitivity[J]. Power System Protection and Control, 2021, 49(2): 140–148 [2] 吴丹岳. 基于直觉模糊粗糙集相似度的电压暂降源定位方法[J]. 中国电力, 2017, 50(3): 128–132,136 WU Danyue. Voltage sag source locating method based on similarity measure of intuitionistic fuzzy rough sets[J]. Electric Power, 2017, 50(3): 128–132,136 [3] 祁博, 邹金慧, 范玉刚, 等. 基于Hilbert-Huang变换和小波包能量谱的电压暂降源识别[J]. 中国电力, 2013, 46(8): 112–117 QI Bo, ZOU Jinhui, FAN Yugang, et al. Identification of voltage sags source based on Hilbert-Huang transform and wavelet packet energy spectrum[J]. Electric Power, 2013, 46(8): 112–117 [4] 赵洛印, 李忠诚, 王丹, 等. 基于GWO-SVM的电压暂降扰动源识别[J]. 电测与仪表, 2019, 56(23): 76–85 ZHAO Luoyin, LI Zhongcheng, WANG Dan, et al. Identification of voltage sag disturbance sources based on GWO-SVM[J]. Electrical Measurement & Instrumentation, 2019, 56(23): 76–85 [5] 李夏林, 刘雅娟, 朱武. 基于配电网的复合电压暂降源分类与识别新方法[J]. 电力系统保护与控制, 2017, 45(2): 131–139 LI Xialin, LIU Yajuan, ZHU Wu. A new method to classify and identify composite voltage sag sources in distribution network[J]. Power System Protection and Control, 2017, 45(2): 131–139 [6] 郑智聪, 王红, 齐林海. 基于深度学习模型融合的电压暂降源识别方法[J]. 中国电机工程学报, 2019, 39(1): 97–104,324 ZHENG Zhicong, WANG Hong, QI Linhai. Recognition method of voltage sag sources based on deep learning models' fusion[J]. Proceedings of the CSEE, 2019, 39(1): 97–104,324 [7] 李晨懿, 杨家莉, 徐永海, 等. 模糊综合评价在电压暂降源识别中的应用[J]. 电网技术, 2017, 41(3): 1022–1028 LI Chenyi, YANG Jiali, XU Yonghai, et al. Application of comprehensive fuzzy evaluation method on recognition of voltage sag disturbance sources[J]. Power System Technology, 2017, 41(3): 1022–1028 [8] 翁国庆, 王强, 黄飞腾, 等. 配电网络电压暂降源自动定位与智能识别[J]. 浙江工业大学学报, 2016, 44(1): 45–51 WENG Guoqing, WANG Qiang, HUANG Feiteng, et al. Automatic location and intelligent recognition of voltage sag source in distribution network[J]. Journal of Zhejiang University of Technology, 2016, 44(1): 45–51 [9] 张博, 唐钰政, 代双寅, 等. 供用电双方满意的电压暂降治理增值服务策略[J]. 中国电力, 2020, 53(11): 50–59 ZHANG Bo, TANG Yuzheng, DAI Shuangyin, et al. Value-added service strategy of voltage sag governance for mutual satisfaction of power supply companies and power users[J]. Electric Power, 2020, 53(11): 50–59 [10] 王全义, 王新环, 卢彩霞, 等. 基于数学形态学的电压暂降扰动定位中的应用[J]. 传感器与微系统, 2021, 40(12): 157–160 WANG Quanyi, WANG Xinhuan, LU Caixia, et al. Application of voltage sag disturbance localization based on mathematical morphology[J]. Transducer and Microsystem Technologies, 2021, 40(12): 157–160 [11] 张振宇, 张明龙, 高源, 等. 基于多域特征的扰动辨识方法研究[J]. 电力系统保护与控制, 2021, 49(22): 137–144 ZHANG Zhenyu, ZHANG Minglong, GAO Yuan, et al. Power disturbance identification research based on multi-domain features[J]. Power System Protection and Control, 2021, 49(22): 137–144 [12] 胡安平, 姜玉洁, 陶以彬, 等. 基于小波能量熵的配电网电压暂降源定位方法[J]. 电工电能新技术, 2021, 40(5): 50–56 HU Anping, JIANG Yujie, TAO Yibin, et al. Voltage sag source location in distribution networks based on wavelet energy entropy[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(5): 50–56 [13] VAPNIK V N. The nature of statistical learning theory[M]. New York, NY: Springer New York, 1995. [14] 胡翀, 徐斌, 甄超, 等. 基于电压暂降监测数据的敏感负荷非侵入式识别方法[J]. 中国电力, 2021, 54(8): 35–42,51 HU Chong, XU Bin, ZHEN Chao, et al. A non-invasive identification method for sensitive load based on voltage sag monitoring data[J]. Electric Power, 2021, 54(8): 35–42,51 [15] 卢彩霞, 王新环, 刘志超, 等. 基于改进S变换-TT变换的电压暂降特性研究[J]. 电子测量技术, 2019, 42(4): 58–64 LU Caixia, WANG Xinhuan, LIU Zhichao, et al. Research of voltage sag based on improved S transform-TT transform[J]. Electronic Measurement Technology, 2019, 42(4): 58–64 [16] 徐健, 王磊. 基于S变换模矩阵的电网扰动信号检测[J]. 电子测量技术, 2018, 41(21): 20–24 XU Jian, WANG Lei. Detection of disturbances signal based on S-transform module matrixes[J]. Electronic Measurement Technology, 2018, 41(21): 20–24 [17] 李冉. 基于改进S变换与支持向量机的电能质量扰动识别[D]. 北京: 华北电力大学, 2017. LI Ran. Power quality disturbance identification based on improved S transform and support vector machine[D]. Beijing: North China Electric Power University, 2017. [18] 杨桢, 马钰超, 李丽, 等. 基于HHT和GA-BP的电压暂降源定位方法[J]. 中国电力, 2022, 55(3): 97–104 YANG Zhen, MA Yuchao, LI Li, et al. A novel method for voltage sag source location based on HHT and GA-BP[J]. Electric Power, 2022, 55(3): 97–104 [19] 沙浩源, 梅飞, 李丹奇, 等. 基于改进生成对抗网络的电压暂降事件类型辨识研究[J]. 中国电机工程学报, 2021, 41(22): 7648–7660 SHA Haoyuan, MEI Fei, LI Danqi, et al. Research on voltage sag event type identification based on improved generative adversarial networks[J]. Proceedings of the CSEE, 2021, 41(22): 7648–7660 [20] 汪颖, 谢佳妮, 邓凌峰, 等. 基于典型波形特征与改进DBSCAN的电压暂降同源识别方法[J]. 电力系统自动化, 2021, 45(11): 126–135 WANG Ying, XIE Jiani, DENG Lingfeng, et al. Identification method for same-source voltage sags based on typical waveform characteristics and improved density-based spatial clustering of applications with noise[J]. Automation of Electric Power Systems, 2021, 45(11): 126–135 [21] 汪颖, 王欢, 李琼林, 等. 基于距离判别分析的电压暂降源识别方法[J]. 电力系统保护与控制, 2020, 48(19): 9–16 WANG Ying, WANG Huan, LI Qionglin, et al. Identification method of voltage sag source based on distance discriminant analysis[J]. Power System Protection and Control, 2020, 48(19): 9–16 [22] 夏小飞, 芦宇峰, 苏毅, 等. 基于相空间重构与改进GSA-SVM的高压断路器机械故障诊断[J]. 中国电力, 2021, 54(10): 169–176 XIA Xiaofei, LU Yufeng, SU Yi, et al. Mechanical fault diagnosis of high voltage circuit breakers based on phase space reconstruction and improved GSA-SVM[J]. Electric Power, 2021, 54(10): 169–176 [23] 李一琨, 车权, 赵慧荣, 等. 基于PSO-SVM的电网调度电厂耗煤基准值滚动预测[J]. 中国电力, 2020, 53(2): 142–149 LI Yikun, CHE Quan, ZHAO Huirong, et al. PSO-SVM-based rolling forecast of coal consumption reference value for the power plants dispatched by power grid[J]. Electric Power, 2020, 53(2): 142–149 [24] JIANG X Y, LI S. BAS: beetle antennae search algorithm for optimization problems[J]. International Journal of Robotics and Control, 2018, 1(1): 1. [25] JIANG X Y, LI S. Beetle antennae search without parameter tuning (BAS-WPT) for multi-objective optimization[J]. Filomat, 2020, 34(15): 5113–5119.
|