[1] 王岳, 杨国华, 庄家懿, 等. 基于一致性算法的微电网无差调频控制策略[J]. 中国电力, 2020, 53(10): 187–191 WANG Yue, YANG Guohua, ZHUANG Jiayi, et al. Zero-error frequency regulation control method for microgrids based on consensus algorithm[J]. Electric Power, 2020, 53(10): 187–191 [2] 随权, 魏繁荣, 林湘宁, 等. 一种基于可控负荷效率控制的孤岛微网新型调度策略[J]. 中国电机工程学报, 2019, 39(24): 7168–7178, 7490 SUI Quan, WEI Fanrong, LIN Xiangning, et al. A novel dispatching strategy for isolated microgrid based on controllable load efficiency control[J]. Proceedings of the CSEE, 2019, 39(24): 7168–7178, 7490 [3] RAHIMI F, IPAKCHI A. Demand response as a market resource under the smart grid paradigm[J]. IEEE Transactions on Smart Grid, 2010, 1(1): 82–88. [4] 苏宏升, 江昆, 杨祯, 等. 基于虚拟同步发电机的微网频率与电压综合控制策略[J]. 电力自动化设备, 2020, 40(3): 21–28 SU Hongsheng, JIANG Kun, YANG Zhen, et al. Comprehensive control strategy of microgrid frequency and voltage based on virtual synchronous generator[J]. Electric Power Automation Equipment, 2020, 40(3): 21–28 [5] 康慨, 张超, 张云龙, 等. 交直流混合微电网二次频率电压协调控制策略[J]. 武汉大学学报(工学版), 2021, 54(3): 239–246 KANG Kai, ZHANG Chao, ZHANG Yunlong, et al. Secondary frequency and voltage coordinated control strategy for AC/DC hybrid microgrid[J]. Engineering Journal of Wuhan University, 2021, 54(3): 239–246 [6] 马经纬, 王晓梅, 陈淼, 等. 基于多智能体系统的智能微网分散协调控制策略[J]. 电网与清洁能源, 2017, 33(11): 15–23, 31 MA Jingwei, WANG Xiaomei, CHEN Miao, et al. A decentralized control method for smart micro-grid based on multi-agent system[J]. Power System and Clean Energy, 2017, 33(11): 15–23, 31 [7] 赵永良, 付鑫, 郭阳, 等. 基于深度学习和图像识别的电力配件智能出入库[J]. 中国电力, 2021, 54(3): 55–60 ZHAO Yongliang, FU Xin, GUO Yang, et al. Intelligent storage and retrieval of power accessories based on deep learning and image recognition[J]. Electric Power, 2021, 54(3): 55–60 [8] 程乐峰, 余涛, 张孝顺, 等. 机器学习在能源与电力系统领域的应用和展望[J]. 电力系统自动化, 2019, 43(1): 15–31 CHENG Lefeng, YU Tao, ZHANG Xiaoshun, et al. Machine learning for energy and electric power systems: state of the art and prospects[J]. Automation of Electric Power Systems, 2019, 43(1): 15–31 [9] 史建勋, 张冲标, 吴晗, 等. 高比例光伏微网无功均分控制中的Q学习方法[J]. 电力系统及其自动化学报, 2021, 33(8): 88–93 SHI Jianxun, ZHANG Chongbiao, WU Han, et al. Q-learning method in reactive power sharing control of high-proportion photovoltaic microgrid[J]. Proceedings of the CSU-EPSA, 2021, 33(8): 88–93 [10] 唐捷, 张泽宇, 程乐峰, 等. 基于CEQ(λ)强化学习算法的微电网智能发电控制[J]. 电测与仪表, 2017, 54(1): 39–45 TANG Jie, ZHANG Zeyu, CHENG Lefeng, et al. Smart generation control for micro-grids based on correlated equilibrium Q(λ) learning algorithm[J]. Electrical Measurement & Instrumentation, 2017, 54(1): 39–45 [11] 师瑞峰, 李少鹏. 电动汽车V2G问题研究综述[J]. 电力系统及其自动化学报, 2019, 31(6): 28–37 SHI Ruifeng, LI Shaopeng. Review on studies of V2G problem in electric vehicles[J]. Proceedings of the CSU-EPSA, 2019, 31(6): 28–37 [12] 崔全胜, 白晓民, 董伟杰, 等. 用户侧综合能源系统规划运行联合优化[J]. 中国电机工程学报, 2019, 39(17): 4967–4981,5279 CUI Quansheng, BAI Xiaomin, DONG Weijie, et al. Joint optimization of planning and operation in user-side multi-energy systems[J]. Proceedings of the CSEE, 2019, 39(17): 4967–4981,5279 [13] 吴科成, 高志华, 刘瑞宽, 等. 考虑分布式储能功率四象限输出的主动配电网鲁棒优化调度模型[J]. 南方电网技术, 2021, 15(11): 75–84 WU Kecheng, GAO Zhihua, LIU Ruikuan, et al. Robust optimal scheduling model of active distribution network considering four-quadrant output of distributed energy storage power[J]. Southern Power System Technology, 2021, 15(11): 75–84 [14] YANG J, ZENG Z L, TANG Y F, et al. Load frequency control in isolated micro-grids with electrical vehicles based on multivariable generalized predictive theory[J]. Energies, 2015, 8: 2145–2164.[LinkOut]. [15] 范培潇, 杨军, 肖金星, 等. 基于深度Q学习的含电动汽车孤岛微电网负荷频率控制策略[J]. 电力建设, 2022, 43(4): 91–99 FAN Peixiao, YANG Jun, XIAO Jinxing, et al. Load frequency control strategy based on deep Q learning for island microgrid with electric vehicles[J]. Electric Power Construction, 2022, 43(4): 91–99 [16] 刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1–27 LIU Quan, ZHAI JianWei, ZHANG ZongZhang, et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41(1): 1–27 [17] 赵星宇, 丁世飞. 深度强化学习研究综述[J]. 计算机科学, 2018, 45(7): 1–6 ZHAO Xingyu, DING Shifei. Research on deep reinforcement learning[J]. Computer Science, 2018, 45(7): 1–6 [18] HUANG L W, FU M S, QU H, et al. A deep reinforcement learning-based method applied for solving multi-agent defense and attack problems[J]. Expert Systems With Applications, 2021, 176: 114896. [19] 赵建立, 汤卓凡, 王桂林, 等. 具有储能作用的用户侧资源运行特性[J]. 综合智慧能源, 2022, 44(2): 8–14 ZHAO Jianli, TANG Zhuofan, WANG Guilin, et al. Operation characteristics of user-side resources with energy storage function[J]. Integrated Intelligent Energy, 2022, 44(2): 8–14 [20] 姚蓝霓, 李钦豪, 杨景旭, 等. 考虑电动汽车充放电支撑的配用电系统综合无功优化[J]. 电力系统自动化, 2022, 46(6): 39–47 YAO Lanni, LI Qinhao, YANG Jingxu, et al. Comprehensive reactive power optimization of power distribution and consumption system with support of electric vehicle charging and discharging[J]. Automation of Electric Power Systems, 2022, 46(6): 39–47 [21] RAO Y Q, YANG J, XIAO J X, et al. A frequency control strategy for multimicrogrids with V2 G based on the improved robust model predictive control[J]. Energy, 2021, 222: 119963. [22] 刘俊峰, 陈剑龙, 王晓生, 等. 基于深度强化学习的微能源网能量管理与优化策略研究[J]. 电网技术, 2020, 44(10): 3794–3803 LIU Junfeng, CHEN Jianlong, WANG Xiaosheng, et al. Energy management and optimization of multi-energy grid based on deep reinforcement learning[J]. Power System Technology, 2020, 44(10): 3794–3803
|