[1] 周海明, 刘广一, 刘超群. 能源互联网技术框架研究[J]. 中国电力, 2014, 47(11): 140-144 ZHOU Haiming, LIU Guangyi, LIU Chaoqun. Study on the energy internet technology framework[J]. Electric Power, 2014, 47(11): 140-144 [2] 艾精文, 党晓婧, 吕启深, 等. 基于物联网的具有全景功能的全维度设备状态监测系统研究[J]. 电力系统保护与控制, 2019, 47(16): 47: 122-128 AI Jingwen, DANG Xiaojing, LÜ Qishen, et al. Research on full dimension equipment status monitoring system with panoramic function[J]. Power System Protection and Control, 2019, 47(16): 47: 122-128 [3] 孙宏斌, 郭庆来, 潘昭光. 能源互联网: 理念、架构与前沿展望[J]. 电力系统自动化, 2015, 39(19): 1-8 SUN Hongbin, GUO Qinglai, PAN Zhaoguang. Energy Internet: concept, architecture and frontier outlook[J]. Automation of Electric Power Systems, 2015, 39(19): 1-8 [4] 薛禹胜, 朱洪波, 王琴, 等. 物联网对能源转型的支撑[J]. 物联网学报, 2019, 3(1): 1-7 XUE Yusheng, ZHU Hongbo, WANG Qin, et al. Support of the Internet of Things for energy transformation[J]. Chinese Journal on Internet of Things, 2019, 3(1): 1-7 [5] 葛磊蛟, 汪宇倩, 戚嘉兴, 等. 面向城市能源互联网的电力物联网内涵、架构和关键技术[J]. 电力建设, 2019, 40(9): 91-98 GE Leijiao, WANG Yuqian, QI Jiaxing, et al. The content, frameworks and key technologies of power Internet of Things for urban energy Internet[J]. Electric Power Construction, 2019, 40(9): 91-98 [6] 汤奕, 王琦, 倪明, 等. 电力信息物理融合系统中的网络攻击分析[J]. 电力系统自动化, 2016, 40(6): 148-151 TANG Yi, WANG Qi, NI Ming, et al. Analysis of cyber attacks in cyber physical power system[J]. Automation of Electric Power Systems, 2016, 40(6): 148-151 [7] 王琦, 邰伟, 汤奕, 等. 面向电力信息物理系统的虚假数据注入攻击研究综述[J]. 自动化学报, 2019, 45(1): 72-83 WANG Qi, TAI Wei, TANG Yi, et al. A review on false data injection attack toward cyber-physical power system[J]. Acta Automatica Sinica, 2019, 45(1): 72-83 [8] 张强. 警惕! 能攻击电网的武器已成批出现[N]. 科技日报, 2019-03-27(5). [9] WEISS W. Rapid attack detection, isolation and characterization systems (RADICS) [EB/OL]. (2015-12-14)[2020-05-01]https://www.darpa.mil/program/rapid-attack-detection-isolation-and-characterization-systems. [10] MICHAEL M. Attack Landscape H1 2019[R]. F-Secure, 2019. [11] BAMIDURO W, VAN DER MEULEN R. Gartner says worldwide iot security spending will reach $1. 5 billion in 2018[EB/OL]. (2018-03-21)[2020-03-13]. https://www.gartner.com/en/newsroom/press-releases/2018-03-21-gartner-says-worldwide-iot-security-spending-will-reach-1-point-5-billion-in-2018. [12] 刘杨, 彭木根. 6G内生安全: 体系结构与关键技术[J]. 电信科学, 2020, 36(1): 11-20 LIU Yang, PENG Mugen. 6G endogenous security: architecture and key technologies[J]. Telecommunications Science, 2020, 36(1): 11-20 [13] 物联网安全创新实验室. 物联网终端安全白皮书[R]. 中国信通院, 2019. [14] XU Q, ZHENG R, SAAD W, et al. Device fingerprinting in wireless networks: challenges and opportunities[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1): 94-104. [15] POLAK A C, GOECKEL D L. Wireless device identification based on RF oscillator imperfections[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(12): 2492-2501. [16] 俞佳宝, 胡爱群, 朱长明, 等. 无线通信设备的射频指纹提取与识别方法[J]. 密码学报, 2016, 3(5): 433-446 YU Jiabao, HU Aiqun, ZHU Changming, et al. RF fingerprinting extraction and identification of wireless communication devices[J]. Journal of Cryptologic Research, 2016, 3(5): 433-446 [17] PENG L N, ZHANG J Q, LIU M, et al. Deep learning based RF fingerprint identification using differential constellation trace figure[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 1091-1095. [18] JAFARI H, OMOTERE O, ADESINA D, et al. IoT devices fingerprinting using deep learning[C]//MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). Los Angeles, CA, USA. IEEE, 2018: 1-9. [19] COBB W E, GARCIA E W, TEMPLE M A, et al. Physical layer identification of embedded devices using RF-DNA fingerprinting[C]//2010 - MILCOM 2010 Military Communications Conference. San Jose, CA, USA. IEEE, 2010: 2168-2173. [20] WONG L J, HEADLEY W C, MICHAELS A J. Specific emitter identification using convolutional neural network-based IQ imbalance estimators[J]. IEEE Access, 2019, 7: 33544-33555. [21] 崔世界, 曾鹏, 熊文, 等. 基于WIA的配电网广域通信与同步技术[J]. 南方电网技术, 2019, 13(4): 13: 31-36 CUI Shijie, ZENG Peng, XIONG Wen, et al. Wide area communication and synchronization technology of distribution network based on WIA[J]. Southern Power System Technology, 2019, 13(4): 13: 31-36 [22] KÖSE M, TAŞCIOĞLU S, TELATAR Z. RF fingerprinting of IoT devices based on transient energy spectrum[J]. IEEE Access, 2019, 7: 18715-18726. [23] DING L D, WANG S L, WANG F G, et al. Specific emitter identification via convolutional neural networks[J]. IEEE Communications Letters, 2018, 22(12): 2591-2594. [24] SATIJA U, TRIVEDI N, BISWAL G, et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(3): 581-591. [25] YANG K, KANG J, JANG J, et al. Multimodal sparse representation-based classification scheme for RF fingerprinting[J]. IEEE Communications Letters, 2019, 23(5): 867-870. [26] PAN Y W, YANG S H, PENG H, et al. Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7: 54425-54434. [27] FANG H, WANG X B, HANZO L. Learning-aided physical layer authentication as an intelligent process[J]. IEEE Transactions on Communications, 2019, 67(3): 2260-2273. [28] SUSKI II W C, TEMPLE M A, MENDENHALL M J, et al. Using spectral fingerprints to improve wireless network security[C]//IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference. New Orleans, LO, USA. IEEE, 2008: 1-5. [29] 魏兰兰. 基于设备指纹的无线设备识别研究[D]. 北京: 北京交通大学, 2019. WEI Lanlan. Research on wireless device identification based on device fingerprint[D]. Beijing: Beijing Jiaotong University, 2019. [30] CHEN J S, RAN X K. Deep learning with edge computing: a review[J]. Proceedings of the IEEE, 2019, 107(8): 1655-1674. [31] MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590-3600. [32] PENG L N, LI G Y, ZHANG J Q, et al. An investigation of using loop-back mechanism for channel reciprocity enhancement in secret key generation[J]. IEEE Transactions on Mobile Computing, 2019, 18(3): 507-519. [33] HAN S, MAO H Z, DALLY W J. Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding[EB/OL]. (2016-2-15)[2020-2-17]. https://arxiv.org/abs/1510.00149 [34] PENG L N, HU A Q, ZHANG J Q, et al. Design of a hybrid RF fingerprint extraction and device classification scheme[J]. IEEE Internet of Things Journal, 2019, 6(1): 349-360.
|