[1] CHEN S Z, HU J L, SHI Y, et al. Vehicle-to-everything (v2x) services supported by LTE-based systems and 5G[J]. IEEE Communications Standards Magazine, 2017, 1(2): 70-76. [2] VARGA N, BOKOR L, TAKÁCS A, et al. An architecture proposal for V2X communication-centric traffic light controller systems[C]//2017 15th International Conference on ITS Telecommunications (ITST). Warsaw, Poland. IEEE, 2017: 1-7. [3] ZHOU H B, XU W C, CHEN J C, et al. Evolutionary V2X technologies toward the Internet of vehicles: challenges and opportunities[J]. Proceedings of the IEEE, 2020, 108(2): 308-323. [4] HU Y, FENG J J, CHEN W L. A LTE-cellular-based V2X solution to future vehicular network[C]//2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). Xi'an, China. IEEE, 2018: 2658-2662. [5] MOUBAYED A, SHAMI A, HEIDARI P, et al. Edge-enabled V2X service placement for intelligent transportation systems[J]. IEEE Transactions on Mobile Computing, DOI: 10.1109/TMC.2020.2965929. [6] 缪立新, 王发平. V2X车联网关键技术研究及应用综述[J]. 汽车工程学报, 2020, 10(1): 1-12 MIAO Lixin, WANG Faping. Review on research and applications of V2X key technologies[J]. Chinese Journal of Automotive Engineering, 2020, 10(1): 1-12 [7] CHEN S Z, HU J L, SHI Y, et al. A vision of C-V2X: technologies, field testing, and challenges with Chinese development[J]. IEEE Internet of Things Journal, 2020, 7(5): 3872-3881. [8] 魏秀岭, 杜传祥. 基于粒子群算法加权的Voronoi图电动汽车充网络优化规划[J]. 数字技术与应用, 2018, 36(2): 119-121 WEI Xiuling, DU Chuanxiang. Weighted Voronoi diagram electric vehicle charging network optimization planning based on particle swarm optimization[J]. Digital Technology and Application, 2018, 36(2): 119-121 [9] ZHANG W G, ZHANG D, MU B Q, et al. Decentralized electric vehicle charging strategies for reduced load variation and guaranteed charge completion in regional distribution grids[J]. Energies, 2017, 10(2): 147. [10] CAPAR I, KUBY M, LEON V J, et al. An arc cover-path-cover formulation and strategic analysis of alternative-fuel station locations[J]. European Journal of Operational Research, 2013, 227(1): 142-151. [11] CHEN L X, HUANG X L, CHEN Z, et al. Study of a new quick-charging strategy for electric vehicles in highway charging stations[J]. Energies, 2016, 9(9): 744. [12] 葛少云, 冯亮, 刘洪, 等. 电动汽车充电站规划布局与选址方案的优化方法[J]. 中国电力, 2012, 45(11): 96-101 GE Shaoyun, FENG Liang, LIU Hong, et al. An optimization approach for the layout and location of electric vehicle charging stations[J]. Electric Power, 2012, 45(11): 96-101 [13] 高建树, 王明强, 宋兆康, 等. 基于遗传算法的机场充电桩布局选址研究[J]. 计算机工程与应用, 2018, 54(23): 210-216 GAO Jianshu, WANG Mingqiang, SONG Zhaokang, et al. Study on site selection of airport charging pile based ongenetic algorithm[J]. Computer Engineering and Applications, 2018, 54(23): 210-216 [14] YOU P C, YANG Z Y, ZHANG Y M, et al. Optimal charging schedule for a battery switching station serving electric buses[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3473-3483. [15] ZHANG Y M, WEI Z, LI H, et al. Optimal charging scheduling for catenary-free trams in public transportation systems[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 227-237. [16] ZHANG Y M, YOU P C, CAI L. Optimal charging scheduling by pricing for EV charging station with dual charging modes[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(9): 3386-3396. [17] 黄碧斌, 孔维政, 李琼慧. 中国典型城市电网电动汽车容纳能力研究[J]. 中国电力, 2013, 46(10): 91-95 HUANG Bibin, KONG Weizheng, LI Qionghui. Capability study of typical power grid in accommodating electric vehicles in China[J]. Electric Power, 2013, 46(10): 91-95 [18] ZHANG Y M, CHEN J Y, CAI L, et al. Expanding EV charging networks considering transportation pattern and power supply limit[J]. IEEE Transactions on Smart Grid, 2019, 10(6): 6332-6342. [19] 美国交通部调查统计数据 (National Household Travel Survey, NHTS): U. S. Department of transportation, federal highway administration, 2009 national household travel survey [EB/OL].[2020-3-2]. http://nhts.ornl.gov. [20] TOPRAK S, YALMAN Y. A new full-reference image quality metric based on just noticeable difference[J]. Computer Standards & Interfaces, 2017, 50: 18-25. [21] ARREOLA E V, WILSON J R. Bayesian multiple membership multiple classification logistic regression model on student performance with random effects in university instructors and majors[J]. PLoS One, 2020, 15(1): 1-19. [22] 李松. 多服务窗混合制M/M/C/N排队模型研究[D]. 重庆: 重庆师范大学, 2013. LI Song. Variable input rate with impatient customers M/M/C/N queueing model[D]. Chongqing: Chongqing Normal University, 2013. [23] JIAO D K. Study on a call model based on the M/M/ S/K queuing system[C]//Proceedings of 2011 International Conference on Electronics and Optoelectronics. Dalian, Dalian. IEEE, 2011: V3-165-V3-168. [24] 孙荣恒, 李建平. 排队论基础[M]. 北京: 科学出版社, 2015. [25] XIAO D, AN S, CAI H, et al. An optimization model for electric vehicle charging infrastructure planning considering queuing behavior with finite queue length[J]. Journal of Energy Storage, 2020, 29: 101317. [26] ZHANG Y M, CAI L. Poster: dynamic charging scheduling for EV parking lots with renewable energy[C]//2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). Toronto, ON, Canada. IEEE, 2017: 1-2. [27] 张宁, 刘晓波, 黄少华, 等. 考虑电网-用户多目标的V2G模式研究[J]. 电力科学与工程, 2020, 36(4): 32-37 ZHANG Ning, LIU Xiaobo, HUANG Shaohua, et al. Research on V2G model considering grid-user multi-objective[J]. Electric Power Science and Engineering, 2020, 36(4): 32-37 [28] LIN Y N. Necessary/sufficient conditions for Pareto optimality in finite horizon mean-field type stochastic differential game[J]. Automatica, 2020, 119: 108951.
|