[1] 国家能源局. 中国清洁燃煤发电现状与未来发展[Z]. 2018: 4-22. [2] 袁周. 超超临界机组过热器管道用T92钢高温腐蚀及剩余寿命评估方法研究[D]. 广州:华南理工大学, 2018. YUAN Zhou. Research on high temperature corrosion and method of residual life evaluation for T92 steel used in superheater tube of ultra supercritical boiler[D]. Guangzhou: South China University of Technology, 2018. [3] 牛海明, 邱忠昌, 黄焕袍. 1 000 MW二次再热超超临界机组再热汽温控制策略及工程应用[J]. 中国电力, 2017, 50(9): 138–142 NIU Haiming, QIU Zhongchang, HUANG Huanpao. The reheat steam temperature control strategy for the 1 000 MW ultra-supercritical double-reheat unit and its application[J]. Electric Power, 2017, 50(9): 138–142 [4] 崔青汝, 牛海明. 1 000 MW二次再热火电机组主蒸汽温度控制策略及工程应用[J]. 中国电力, 2017, 50(6): 27–31 CUI Qingru, NIU Haiming. The control strategy of main steam temperature for a 1 000 MW double-reheat thermal generation unit and its application[J]. Electric Power, 2017, 50(6): 27–31 [5] 林文孚, 胡燕. 单元机组自动控制技术[M]. 北京: 中国电力出版社, 2008: 71-90. [6] 杨濮亦, 李海永. 锅炉过热蒸汽温度控制策略优化[J]. 热力发电, 2014, 43(10): 100–102, 115 YANG Puyi, LI Haiyong. Superheated steam temperature control optimization for a boiler after low NOx combustion retrofitting[J]. Thermal Power Generation, 2014, 43(10): 100–102, 115 [7] 张永波. 超超临界二次再热机组汽温控制策略研究[D]. 北京: 华北电力大学, 2014: 12-21. ZHANG Yongbo. Study on steam temperature control strategy of ultra-supercritical double reheat units[D]. Beijing: North China Electric Power University, 2014: 12-21. [8] 韩京清. 从PID技术到“自抗扰控制”技术[J]. 控制工程, 2002, 9(3): 13–18 HAN Jingqing. From PID technique to active disturbances rejection control technique[J]. Control Engineering of China, 2002, 9(3): 13–18 [9] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策, 1998, 13(1): 19–23 HAN Jingqing. Auto disturbances rejection controller and its applications[J]. Control and Decision, 1998, 13(1): 19–23 [10] 马晓勇, 吴宏艳. 自抗扰控制在循环流化床锅炉床温控制中的应用[J]. 华北电力大学学报(自然科学版), 2011, 38(5): 81–83 MA Xiaoyong, WU Hongyan. Application of active disturbance rejection control in bed temperature control of circulating fluidized bed boiler[J]. Journal of North China Electric Power University (Natural Science Edition), 2011, 38(5): 81–83 [11] 李健, 谭文, 张彬文. SCR烟气脱硝系统线性自抗扰控制研究[J]. 动力工程学报, 2019, 39(3): 203–207 LI Jian, TAN Wen, ZHANG Binwen. Linear active disturbance rejection control of SCR flue gas denitrification systems[J]. Journal of Chinese Society of Power Engineering, 2019, 39(3): 203–207 [12] 胡昌镁, 任军. 线性ADRC在汽包水位串级三冲量控制上的研究与应用[J]. 中国电力, 2014, 47(12): 28–31 HU Changmei, REN Jun. Study and application of LADRC for drum water-level cascade three-element control[J]. Electric Power, 2014, 47(12): 28–31 [13] ZHANG Yuqiong. Low-order active disturbance rejection control on furnace pressure of 1 000 MW power plant[C]//中国自动化学会控制理论专业委员会. 第36届中国控制会议论文集. 大连, 2017: 1151-1156. [14] 朱斌. 自抗扰控制入门[M]. 北京: 北京航空航天大学出版社, 2017: 30-55. [15] GAO Z. Scaling and bandwidth-parameterization based controller tuning[C] // American Control Conference, 2003. Proceedings of the 2003, IEEE. Denver, CO, USA, 2003: 4989-4996. [16] 陈星. 自抗扰控制器参数整定方法及其在热工过程中的应用[D]. 北京: 清华大学, 2008: 12-14. CHEN Xing. Active disturbance rejection controller tuning and its applications to thermal processes[D]. Beijing: Tsinghua University, 2008: 12-14. [17] 雷德明, 严新平. 多目标智能优化算法及其应用[M]. 北京: 科学出版社, 2009: 105-120. [18] COELLO C A C, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256–279. [19] 刘童. 基于Pareto档案粒子群算法的微电网多目标优化[D]. 合肥: 安徽大学, 2018: 19-38. LIU Tong. Multi-objective optimization of microgrid based on Pareto archive particle swarm optimization[D]. Hefei: Anhui University, 2018: 19-38. [20] 韩京清. 自抗扰控制技术—估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008: 183-243. [21] 孙立, 董君伊, 李东海. 基于果蝇算法的过热汽温自抗扰优化控制[J]. 清华大学学报(自然科学版), 2014, 54(10): 1288–1292 SUN Li, DONG Junyi, LI Donghai. Active disturbance rejection control for superheated steam boiler temperatures using the fruit fly algorithm[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(10): 1288–1292 [22] 韩璞. 现代工程控制论[M]. 北京: 中国电力出版社, 2017: 165-185.
|