[1] 王维俭. 电气主设备继电保护原理与应用[M]. 2版. 北京: 中国电力出版社, 2002: 223-245. [2] 毕大强. 大型水轮发电机定子绕组单相接地故障及保护方案的研究[D]. 北京: 清华大学, 2003. BI Daqiang. Studies on stator ground fault and its protection for large-sized hydro-generators[D]. Beijing: Tsinghua University, 2003. [3] 殷林鹏, 桂林, 张琦雪, 等. 基于基波电势分布特征的大型发电机定子接地故障定位方法[J]. 电力自动化设备, 2019, 39(7): 141–146 YIN Linpeng, GUI Lin, ZHANG Qixue, et al. Stator grounding fault location method based on distribution characteristics of fundamental wave potential[J]. Electric Power Automation Equipment, 2019, 39(7): 141–146 [4] 伍利, 彭金宁, 姚李孝, 等. 大型发电机组注入式定子接地保护调试与整定[J]. 中国电力, 2013, 46(9): 92–95, 106 WU Li, PNEG Jinning, YAO Lixiao, et al. Commissioning and setting of voltage-injection stator ground fault protection for large-sized generator[J]. Electric Power, 2013, 46(9): 92–95, 106 [5] 高天云. 上海地区发电机组2007年度保护动作原因分析[J]. 中国电力, 2008, 41(5): 83–85 GAO Tianyun. Cause analysis on the protection action of fossil-fired power generation units in Shanghai area in 2007[J]. Electric Power, 2008, 41(5): 83–85 [6] 陈俊, 陈佳胜, 张琦雪, 等. 发电机机端电压互感器匝间短路导致定子接地保护动作分析[J]. 电力系统自动化, 2016, 40(10): 143–147 CHEN Jun, CHEN Jiasheng, ZHANG Qixue, et al. Operation analysis of stator earth protection due to voltage transformer inter-turn short-circuit at generator terminal[J]. Automation of Electric Power Systems, 2016, 40(10): 143–147 [7] 张琦雪, 王祥珩, 陈佳胜, 等. 组合型接地方式对注入式定子接地保护的影响[J]. 中国电力, 2018, 51(11): 96–103 ZHANG Qixue, WANG Xiangheng, CHEN Jiasheng, et al. Influence of the combination-type grounding scheme on voltage-injected stator ground fault protection[J]. Electric Power, 2018, 51(11): 96–103 [8] 郑涛, 余青蔚, 詹荣荣, 等. 调相机接入对发电机失磁保护的影响[J]. 电力系统保护与控制, 2018, 46(4): 50–56 ZHENG Tao, YU Qingwei, ZHAN Rongrong, et al. Impact of synchronous condenser access on generator loss of excitation protection[J]. Power System Protection and Control, 2018, 46(4): 50–56 [9] 涂小涛, 张征平, 胡卫. 发电机出口电容器缺陷引起定子接地保护动作诊断方法[J]. 电力系统自动化, 2014, 38(24): 96–101 TU Xiaotao, ZHANG Zhengping, HU Wei. Rapid diagnostic method of stator ground fault caused by a faulty terminal capacitor[J]. Automation of Electric Power Systems, 2014, 38(24): 96–101 [10] 南东亮, 孙谊媊, 冯小萍, 等. 一起由PT故障引起基波定子接地保护动作的分析[J]. 智能电网, 2016, 4(5): 458–462 NAN Dongliang, SUN Yiqian, FENG Xiaoping, et al. Analysis of stator ground protection action caused by PT fault[J]. Smart Grid, 2016, 4(5): 458–462 [11] 赵淼, 赵文炎, 高自伟, 等. 电压互感器一次绕组匝间短路引起发电机运行异常的分析及处理[J]. 黑龙江电力, 2014, 36(2): 160–162, 166 ZHAO Miao, ZHAO Wenyan, GAO Ziwei, et al. Analysis and treatment of the abnormality of generator caused by potential transformer primary winding between-turns short circuit[J]. Heilongjiang Electric Power, 2014, 36(2): 160–162, 166 [12] 陈俊, 沈全荣. 扩大单元接线发电机定子接地保护方案[J]. 电力系统自动化, 2007, 31(24): 86–89 CHEN Jun, SHEN Quanrong. Study on stator earth fault protection of generator connected as expanding unit[J]. Automation of Electric Power Systems, 2007, 31(24): 86–89 [13] 谈涛, 陈俊, 王翔, 等. 零序方向元件选择性定子接地保护的分析[J]. 江苏电机工程, 2010, 29(5): 40–43 TAN Tao, CHEN Jun, WANG Xiang, et al. Calculation and analysis of selective stator earth fault protection based on the zero sequence direction elements[J]. Jiangsu Electrical Engineering, 2010, 29(5): 40–43 [14] 李振强, 吕艳萍, 张彦昌. 选择性定子单相接地保护方案浅析[J]. 大电机技术, 2007(3): 13–16 LI Zhenqiang, LU Yanping, ZHANG Yanchang. A fundamental research on stator single-phase earthing protection schemes[J]. Large Electric Machine and Hydraulic Turbine, 2007(3): 13–16 [15] 阎嫦玲, 王耀, 罗苏南, 等. 用于发电机保护的柔性全光纤电流互感器[J]. 电力自动化设备, 2017, 37(4): 191–196 YAN Changling, WANG Yao, LUO Sunan, et al. FFOCT for generator protection[J]. Electric Power Automation Equipment, 2017, 37(4): 191–196 [16] 桂林, 赵斌超, 王光, 等. 上电调相机内部故障分析及主保护配置方案优化设计[J]. 中国电力, 2017, 50(12): 33–37 GUI Lin, ZHAO Binchao, WANG Guang, et al. Internal fault analysis and optimization design of main protection scheme for Shanghai electric phase modifier[J]. Electric Power, 2017, 50(12): 33–37 [17] 桂林, 赵志强, 黄欢. 犍为发电机选择性定子接地保护方案研究[J]. 大电机技术, 2017(7): 83–87 GUI Lin, ZHAO Zhiqiang, HUANG Huan, et al. Study on the selective stator ground protection scheme of qianwei generator[J]. Large Electric Machine and Hydraulic Turbine, 2017(7): 83–87
|