中国电力 ›› 2020, Vol. 53 ›› Issue (12): 159-166,197.DOI: 10.11930/j.issn.1004-9649.202004095

• 电网 • 上一篇    下一篇

灰度纹理与油气特征融合的油纸绝缘老化状态评估

刘东超1, 林语1, 原辉2, 王帅2, 姜敏2, 俞华2, 李海涛1   

  1. 1. 南京南瑞继保电气有限公司,江苏 南京 211102;
    2. 国网山西省电力公司电力科学研究院,山西 太原 030001
  • 收稿日期:2020-04-13 修回日期:2020-05-13 发布日期:2020-12-16
  • 作者简介:刘东超(1980—),男,高级工程师,从事智能一次设备研究,Email:liudc@nrec.com
  • 基金资助:
    国家电网有限公司科技项目(第三代智能变电站辅助系统研究,520530180015)

Aging State Evaluation of Oil-Paper Insulation Based on Fusion of Gray Texture and Oil Gas Features

LIU Dongchao1, LIN Yu1, YUAN Hui2, WANG Shuai2, JIANG Min2, YU Hua2, LI Haitao1   

  1. 1. NR Electric Co., Ltd., Nanjing 211102, China;
    2. State Grid Shanxi Electric Power Company Electric Power Research Institute, Taiyuan 030001, China
  • Received:2020-04-13 Revised:2020-05-13 Published:2020-12-16
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (Research on the Third-Generation Intelligent Substation Auxiliary System, No.520530180015)

摘要: 针对单一局部放电特征辨析老化信息量存在精度不足的问题,提出一种基于局部放电灰度纹理特征与油气特征的D-S证据融合识别方法,对油纸绝缘老化状态进行分析。首先,通过试验构造人工油纸绝缘内部气隙模型,模拟变压器内部实际运行环境,采集油纸绝缘7个老化层级的局部放电信号及油中气体含量,提取各老化层级的灰度纹理特征、统计特征及油气特征,利用支持向量机进行识别。将灰度纹理特征和油气特征的识别结果输入到D-S证据融合框架中进一步识别分析,识别结果与单一特征及其他两两特征融合结果比较。试验结果表明:基于灰度纹理特征与油气特征的D-S证据融合方法对油纸绝缘老化状态的识别效果更佳。

关键词: 局部放电, 灰度纹理特征, 油气特征, D-S证据融合

Abstract: Aiming at the problem of insufficient precision of aging information obtained by single partial discharge(PD) feature discrimination, a D-S evidence fusion recognition method based on PD gray texture and oil-gas features is proposed to analyze the aging state of oil-paper insulation. Firstly, an air gap model of artificial oil-paper insulation is constructed through experiments to simulate the actual operation environment inside the transformer. Next, the PD signals of seven aging levels of oil-paper insulation and the corresponding gas content in oil are collected. Then, the gray texture features, statistical features and oil-gas features of each aging level are extracted, and subsequently identified using the support vector machine. The identification results of gray texture features and oil-gas features are then input into the D-S evidence fusion framework for further recognition and analysis. Finally, the recognition results are compared with the single feature and other two-feature fusion results. The experimental results show that the D-S evidence fusion method based on gray texture feature and oil-gas feature can better identify the aging state of oil-paper insulation.

Key words: partial discharge, gray texture feature, oil-gas feature, D-S evidence fusion