[1] 郭剑波, 于群, 贺庆.电力系统复杂性理论初探[M].北京:科学出版社, 2012:1–2. [2] 曹一家, 郭剑波, 梅生伟, 等.大电网安全性评估的系统复杂性理论[M]. 北京:清华大学出版社, 2010. [3] 梅生伟, 薛安成, 张雪敏. 电力系统自组织临界特性与大电网安全[M]. 北京:清华大学出版社, 2009. [4] 陈竟成, 黄瀚. 印度大停电事故分析与启示[J]. 中国电力, 2012, 45(10):12-16. CHEN Jingcheng, HUANG Han. Analysis and revelation from blackout events in India[J]. Electric Power, 2012, 45(10):12-16. [5] 邹江峰, 章显亮. 巴西"2009·11·10"和"2011·2·4"大停电事故及启示[J]. 中国电力, 2011, 44(11):19-22. ZOU Jiangfeng, ZHANG Xianliang. Summary and revelation of "2009·11·10" and "2011·2·4" blackouts in Brazil power system[J]. Electric Power, 2011, 44(11):19-22. [6] HINES P, APT J, TALUKDAR S. Trends in the history of large blackouts in the United States[C]//Proceedings of 2008 IEEE Power and Energy Society General Meeting:Conversion and Delivery of Electrical Energy in the 21st Century. July 20-24, 2008, Pittsburgh, PA, USA, 2008:1–8. [7] 曹一家, 丁理杰, 江全元, 等. 基于协同学原理的电力系统大停电预测模型[J]. 中国电机工程学报, 2005, 25(18):13-19. CAO Yijia, DING Lijie, JIANG Quanyuan, et al. A predictive model of power system blackout based on synergetic theory[J]. Proceedings of the CSEE, 2005, 25(18):13-19. [8] 于群, 屈玉清, 石良. 基于相对值法和Hurst指数的电网停电事故自相关性分析[J]. 电力系统自动化, 2018, 42(1):55-60. YU Qun, QU Yuqing, SHI Liang. Self-correlation analysis of power grid blackouts based on relative value method and hurst exponent[J]. Automation of Electric Power Systems, 2018, 42(1):55-60. [9] 晁岱峰, 杨军选, 苏盛, 等. 濮阳配电网故障的自组织临界性及其诱因[J]. 电网技术, 2011, 35(1):72-75. CHAO Daifeng, YANG Junxuan, SU Sheng, et al. Self-organized criticality and its cause of faults in Puyang distribution system[J]. Power System Technology, 2011, 35(1):72-75. [10] 巫伟南, 杨军, 胡文平, 等. 考虑输电线路故障特性的电网综合风险评估体系[J]. 电力自动化设备, 2014, 34(6):129-134. WU Weinan, YANG Jun, HU Wenping, et al. Power grid risk assessment system considering characteristics of transmission line failure[J]. Electric Power Automation Equipment, 2014, 34(6):129-134. [11] 于群, 郭剑波. 电网停电事故的自组织临界性及其极值分析[J]. 电力系统自动化, 2007, 31(3):1-3. YU Qun, GUO Jianbo. Self-organized criticality and extreme statistics analysis of electric power system blackouts[J]. Automation of Electric Power Systems, 2007, 31(3):1-3. [12] 曹娜, 曹爽爽, 于群, 等. 基于最大熵的电网停电事故损失负荷预测[J]. 山东科技大学学报(自然科学版), 2017, 36(5):65-71. CAO Na, CAO Shuangshuang, YU Qun, et al. Lost load forecasting of power grid blackouts based on maximum entropy[J]. Journal of Shandong University of Science and Technology(Natural Science), 2017, 36(5):65-71. [13] 万志宏. 基于时间序列的电力系统短期负荷预测研究[D]. 广州:华南理工大学, 2012. [14] 邵璠, 孙育河, 梁岚珍. 基于ARMA模型的风电场风速短期预测[J]. 电网与清洁能源, 2008, 24(7):52-55. SHAO Fan, SUN Yuhe, LIANG Lanzhen. Wind speed short-term forecast for wind farms based on ARMA model[J]. Power System and Clean Energy, 2008, 24(7):52-55. [15] 杨碧源, 赵金笑, 魏宏鸽, 等. 基于BP神经网络的SCR蜂窝状催化剂脱硝性能预测[J]. 中国电力, 2016, 49(10):127-131. YANG Biyuan, ZHAO Jinxiao, WEI Hongge, et al. Performance forecasting for SCR honeycomb catalyst based on BP neural network[J]. Electric Power, 2016, 49(10):127-131. [16] 严旭, 李思源, 张征. 基于遗传算法的BP神经网络在城市用水量预测中的应用[J]. 计算机科学, 2016, 43(S2):547-550. YAN Xu, LI Siyuan, ZHANG Zheng. Application of BP neural network based on genetic algorithms in prediction model of city water consumption[J]. Computer Science, 2016, 43(S2):547-550. [17] 许童羽, 马艺铭, 曹英丽, 等. 基于主成分分析和遗传优化BP神经网络的光伏输出功率短期预测[J]. 电力系统保护与控制, 2016, 44(22):90-95. XU Tongyu, MA Yiming, CAO Yingli, et al. Short term forecasting of photovoltaic output power based on principal component analysis and genetic optimization of BP neural network[J]. Power System Protection and Control, 2016, 44(22):90-95. [18] 国家电力调度通信中心. 全国电网典型事故分析:1988-1998[M]. 北京:中国电力出版社, 1999. [19] 国家电力调度通信中心. 电网典型事故分析:1997-2007年[M]. 北京:中国电力出版社, 2008. [20] 国家电网公司安全监察部. 国家电网公司2008年安全生产事故报告[M]. 北京:中国电力出版社, 2009. [21] 国家电网公司安全监察部. 国家电网公司2011年安全生产事故报告[M]. 北京:中国电力出版社, 2012. [22] 中国水利发电工程学会. 中国水利发电年鉴[M]. 北京:中国电力出版社, 2013. [23] 国家能源局. 全国电力安全生产情况通报[EB/OL]. (2016–12–31)[2017–01–22]. http://www.nea.gov.cn/index.htm. [24] 于群, 石良, 曹娜, 等. 广义极值理论在大停电事故损失负荷预测中的应用[J]. 电力系统自动化, 2016, 40(8):71-77. YU Qun, SHI Liang, CAO Na, et al. Application of generalized extreme value distribution in prediction power loss of large-scale blackouts[J]. Automation of Electric Power Systems, 2016, 40(8):71-77. [25] 国家电网公司.国家电网公司电力生产事故调查规程[M]. 北京:中国电力出版社, 2005. [26] 杨锡运, 任杰, 肖运启. 基于粗糙集的光伏输出功率组合预测模型[J]. 中国电力, 2016, 49(12):133-138. YANG Xiyun, REN Jie, XIAO Yunqi. A combined photovoltaic output forecasting method based on rough set theory[J]. Electric Power, 2016, 49(12):133-138. [27] 马小敏, 高剑, 吴驰, 等. 基于灰色支持向量机的输电线路覆冰厚度预测模型[J]. 中国电力, 2016, 49(11):46-50. MA Xiaomin, GAO Jian, WU Chi, et al. Prediction model for icing thickness of power transmission line based on grey support vector machine[J]. Electric Power,2016, 49(11):46-50. [28] 钱志. 基于改进型SVR的电网短期负荷预测[J]. 中国电力, 2016, 49(8):54-58. QIAN Zhi. Short-term power load forecasting based on improved SVR[J]. Electric Power, 2016, 49(8):54-58. [29] 赵芝璞, 高超, 沈艳霞, 等. 基于关联模糊神经网络和改进型蜂群算法的负荷预测方法[J]. 中国电力, 2018, 51(2):54-60. ZHAO Zhipu, GAO Chao, SHEN Yanxia, et al. A method for load forecasting based on correlated fuzzy neural network and improved artificial bee colony algorithm[J]. Electric Power, 2018, 51(2):54-60. [30] 方博, 何朗. 关于ARMA-BP神经网络组合模型的财政收入预测[J]. 数学杂志, 2015, 35(3):709-713. FANG Bo, HE Lang. Fiscal revence prediction about the ARMA-BP neural network combination model[J]. Journal of Mathematics, 2015, 35(3):709-713. [31] 田亮, 罗宇, 王阳. 基于遗传算法优化BP神经网络的TIG焊缝尺寸预测模型[J]. 上海交通大学学报, 2013, 47(11):1690-1696. TIAN Liang, LUO Yu, WANG Yang. Prediction model of TIG welding seam size based on BP neural network optimized by genetic algorithm[J]. Journal of Shanghai Jiaotong University, 2013, 47(11):1690-1696. [32] 梁毅, 刘世洪. 基于遗传算法优化的BP神经网络的组合预测模型方法研究[J]. 中国农业科学, 2012, 45(23):4924-4930. LIANG Yi, LIU Shihong. Research on the combined forecast model method based on BP neural network improved by genetic algorithm[J]. Scientia Agricultura Sinica, 2012, 45(23):4924-4930. |