中国电力 ›› 2024, Vol. 57 ›› Issue (10): 36-45.DOI: 10.11930/j.issn.1004-9649.202311092
梁海深1(), 王康丽1(
), 宋红宇1(
), 郝金娜1, 肖峻2(
)
收稿日期:
2023-11-20
出版日期:
2024-10-28
发布日期:
2024-10-25
作者简介:
梁海深(1989—),男,硕士,工程师,从事智能配电网规划运行研究,E-mail:lianghaishen@126.com基金资助:
Haishen LIANG1(), Kangli WANG1(
), Hongyu SONG1(
), Jinna HAO1, Jun XIAO2(
)
Received:
2023-11-20
Online:
2024-10-28
Published:
2024-10-25
Supported by:
摘要:
电力电子柔性化和分布式发电(DG)消纳是配电网研究的2个热点问题,揭示了配电网柔性度对DG消纳的影响规律和机理。首先,介绍了配电网柔性度的概念,并改进了柔性度的定义。然后,以典型接线模式和IEEE RBTS-Bus4扩展算例为研究对象,观察随柔性度升高时DG消纳率的变化,并分析规律和机理。研究发现,配电网柔性化并非都能提升DG消纳,存在一个起效条件:智能软开关(soft open point,SOP)某一侧馈线存在DG相对负荷的盈余,同时另一侧存在DG缺额。然而满足起效条件后,消纳率和柔性度之间的规律性仍未显现。提出分析消纳提升限制条件和按SOP安装次序观察的2种方法,发现了隐藏的规律:当存在消纳提升可用空间且无SOP容量限制下,或者同一SOP安装次序下,柔性度和消纳率才具有正相关关系。发现的规律机理为指导配电网的柔性化发展和DG消纳提供了新的理论依据。
梁海深, 王康丽, 宋红宇, 郝金娜, 肖峻. 配电网柔性度对分布式发电消纳的影响规律和机理分析[J]. 中国电力, 2024, 57(10): 36-45.
Haishen LIANG, Kangli WANG, Hongyu SONG, Jinna HAO, Jun XIAO. Influence Rules and Mechanism Analysis of Distribution Network Flexibility Degree on Distributed Generator Accommodation[J]. Electric Power, 2024, 57(10): 36-45.
馈线 | 负荷功率 | DG出力 | ||||||
场景1 | 场景2 | 场景3 | ||||||
F1 | 3.0 | 6.0 | 8.0 | 3.0 | ||||
F2 | 4.0 | 4.0 | 3.0 | 2.0 | ||||
F3 | 5.0 | 2.0 | 2.0 | 4.0 |
表 1 典型场景的DG和负荷功率(两分段两联络接线)
Table 1 DG and load power in typical scenarios (two-section-and-tie wiring) 单位:MW
馈线 | 负荷功率 | DG出力 | ||||||
场景1 | 场景2 | 场景3 | ||||||
F1 | 3.0 | 6.0 | 8.0 | 3.0 | ||||
F2 | 4.0 | 4.0 | 3.0 | 2.0 | ||||
F3 | 5.0 | 2.0 | 2.0 | 4.0 |
场景 | Case | 柔性度Df | 消纳率λDG/% | |||
1 | 0 | 0.00 | 75.00 | |||
1 | 0.49 | 94.17 | ||||
2 | 0.65 | 100.00 | ||||
3 | 0.77 | 75.00 | ||||
4 | 0.84 | 94.17 | ||||
5 | 1.00 | 100.00 | ||||
6 | 1.00 | 100.00 | ||||
2 | 0 | 0.00 | 61.54 | |||
1 | 0.49 | 79.23 | ||||
2 | 0.65 | 84.62 | ||||
3 | 0.77 | 69.23 | ||||
4 | 0.84 | 79.23 | ||||
5 | 1.00 | 92.31 | ||||
6 | 1.00 | 92.31 | ||||
3 | 0 | 0.00 | 100.00 | |||
1 | 0.49 | 100.00 | ||||
2 | 0.65 | 100.00 | ||||
3 | 0.77 | 100.00 | ||||
4 | 0.84 | 100.00 | ||||
5 | 1.00 | 100.00 | ||||
6 | 1.00 | 100.00 |
表 2 不同SOP方案的柔性度和消纳率(两分段两联络接线)
Table 2 Flexibility degrees and accommodation ratios of different SOP schemes (two-section-and-tie wiring)
场景 | Case | 柔性度Df | 消纳率λDG/% | |||
1 | 0 | 0.00 | 75.00 | |||
1 | 0.49 | 94.17 | ||||
2 | 0.65 | 100.00 | ||||
3 | 0.77 | 75.00 | ||||
4 | 0.84 | 94.17 | ||||
5 | 1.00 | 100.00 | ||||
6 | 1.00 | 100.00 | ||||
2 | 0 | 0.00 | 61.54 | |||
1 | 0.49 | 79.23 | ||||
2 | 0.65 | 84.62 | ||||
3 | 0.77 | 69.23 | ||||
4 | 0.84 | 79.23 | ||||
5 | 1.00 | 92.31 | ||||
6 | 1.00 | 92.31 | ||||
3 | 0 | 0.00 | 100.00 | |||
1 | 0.49 | 100.00 | ||||
2 | 0.65 | 100.00 | ||||
3 | 0.77 | 100.00 | ||||
4 | 0.84 | 100.00 | ||||
5 | 1.00 | 100.00 | ||||
6 | 1.00 | 100.00 |
例外情况 | 原因 | |||
可用空间不足 | SOP容量限制 | |||
场景1 Case0、3 | √ | |||
场景1 Case2、5 | √ | |||
场景1 Case2、4 | √ | √ | ||
场景2 Case1、4 | √ | |||
场景2 Case2、3 | √ |
表 3 例外情况的原因(两分段两联络接线)
Table 3 Reason for exception (two-section-and-tie wiring)
例外情况 | 原因 | |||
可用空间不足 | SOP容量限制 | |||
场景1 Case0、3 | √ | |||
场景1 Case2、5 | √ | |||
场景1 Case2、4 | √ | √ | ||
场景2 Case1、4 | √ | |||
场景2 Case2、3 | √ |
馈线 | 负荷功率 | DG出力 | ||||||
场景1 | 场景2 | 场景3 | ||||||
F1 | 3.0 | 2.0 | 8.0 | 3.0 | ||||
F2 | 4.0 | 7.0 | 3.0 | 2.0 | ||||
F3 | 5.0 | 2.0 | 2.0 | 4.0 |
表 4 各典型场景的DG和负荷功率(两供一备接线)
Table 4 DG and load power in typical scenarios (two-supply-one-backup wiring) 单位:MW
馈线 | 负荷功率 | DG出力 | ||||||
场景1 | 场景2 | 场景3 | ||||||
F1 | 3.0 | 2.0 | 8.0 | 3.0 | ||||
F2 | 4.0 | 7.0 | 3.0 | 2.0 | ||||
F3 | 5.0 | 2.0 | 2.0 | 4.0 |
场景 | Case | 柔性度Df | 消纳率λDG/% | |||
1 | 0 | 0.00 | 72.73 | |||
1 | 0.77 | 81.82 | ||||
2 | 0.77 | 100.00 | ||||
3 | 0.77 | 72.73 | ||||
4 | 0.84 | 93.64 | ||||
5 | 1.00 | 100.00 | ||||
6 | 1.00 | 100.00 | ||||
2 | 0 | 0.00 | 61.54 | |||
1 | 0.77 | 69.23 | ||||
2 | 0.77 | 61.54 | ||||
3 | 0.77 | 84.62 | ||||
4 | 0.84 | 79.23 | ||||
5 | 1.00 | 92.31 | ||||
6 | 1.00 | 92.31 | ||||
3 | 0 | 0.00 | 100.00 | |||
1 | 0.77 | 100.00 | ||||
2 | 0.77 | 100.00 | ||||
3 | 0.77 | 100.00 | ||||
4 | 0.84 | 100.00 | ||||
5 | 1.00 | 100.00 | ||||
6 | 1.00 | 100.00 |
表 5 不同SOP方案的柔性度和消纳率(两供一备接线)
Table 5 Flexibility degrees and accommodation ratios of different schemes (two-supply-one-backup wiring)
场景 | Case | 柔性度Df | 消纳率λDG/% | |||
1 | 0 | 0.00 | 72.73 | |||
1 | 0.77 | 81.82 | ||||
2 | 0.77 | 100.00 | ||||
3 | 0.77 | 72.73 | ||||
4 | 0.84 | 93.64 | ||||
5 | 1.00 | 100.00 | ||||
6 | 1.00 | 100.00 | ||||
2 | 0 | 0.00 | 61.54 | |||
1 | 0.77 | 69.23 | ||||
2 | 0.77 | 61.54 | ||||
3 | 0.77 | 84.62 | ||||
4 | 0.84 | 79.23 | ||||
5 | 1.00 | 92.31 | ||||
6 | 1.00 | 92.31 | ||||
3 | 0 | 0.00 | 100.00 | |||
1 | 0.77 | 100.00 | ||||
2 | 0.77 | 100.00 | ||||
3 | 0.77 | 100.00 | ||||
4 | 0.84 | 100.00 | ||||
5 | 1.00 | 100.00 | ||||
6 | 1.00 | 100.00 |
例外情况 | 原因 | 例外情况 | 原因 | |||||||
可用空 间不足 | SOP容 量限制 | 可用空 间不足 | SOP容 量限制 | |||||||
场景1 Case0、3 | √ | 场景2 Case0、2 | √ | |||||||
场景1 Case2、5 | √ | 场景2 Case3、4 | √ | |||||||
场景1 Case2、4 | √ | √ | 场景2 Case1~3 | √ | ||||||
场景1 Case1~3 | √ |
表 6 例外情况的原因(两供一备接线)
Table 6 Reasons for exception (two-supply-one-backup wiring)
例外情况 | 原因 | 例外情况 | 原因 | |||||||
可用空 间不足 | SOP容 量限制 | 可用空 间不足 | SOP容 量限制 | |||||||
场景1 Case0、3 | √ | 场景2 Case0、2 | √ | |||||||
场景1 Case2、5 | √ | 场景2 Case3、4 | √ | |||||||
场景1 Case2、4 | √ | √ | 场景2 Case1~3 | √ | ||||||
场景1 Case1~3 | √ |
方案编号 | SOP位置 | SOP台数 (端口数) | 柔性度Df | 消纳率λDG/% | 方案编号 | SOP位置 | SOP台数 (端口数) | 柔性度Df | 消纳率λDG/% | |||||||||
0 | 0.000 | 78.05 | 27 | TS1、TS14 | 2(2) | 0.343 | 87.81 | |||||||||||
1 | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | |||||||||
··· | ··· | ··· | ··· | ··· | 48 | TS3、TS13 | 2(2) | 0.303 | 85.89 | |||||||||
3 | TS3 | 1(2) | 0.239 | 81.22 | 49 | TS3、TS14 | 2(2) | 0.320 | 90.05 | |||||||||
··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | |||||||||
6 | TS6 | 1(2) | 0.238 | 78.60 | 80 | TS7、TS14 | 2(2) | 0.310 | 86.88 | |||||||||
7 | TS7 | 1(2) | 0.229 | 78.05 | ··· | ··· | ··· | ··· | ··· | |||||||||
8 | TS8 | 1(2) | 0.211 | 78.60 | 89 | TS9、TS13 | 2(2) | 0.254 | 83.96 | |||||||||
9 | TS9 | 1(2) | 0.189 | 79.28 | ··· | ··· | ··· | ··· | ··· | |||||||||
10 | TS10 | 1(2) | 0.191 | 79.28 | 97 | TS12、TS14 | 2(2) | 0.252 | 86.88 | |||||||||
11 | TS11 | 1(2) | 0.192 | 78.05 | ··· | ··· | ··· | ··· | ··· | |||||||||
12 | TS12 | 1(2) | 0.219 | 78.05 | 101 | TS12~14 | 1(3) | 0.252 | 86.88 | |||||||||
13 | TS13 | 1(2) | 0.203 | 82.72 | 102 | TS1、TS3、TS14 | 3(2) | 0.444 | 90.98 | |||||||||
14 | TS14 | 1(2) | 0.219 | 86.88 | 103 | TS1、TS4、TS6 | 3(2) | 0.454 | 80.47 | |||||||||
··· | ··· | ··· | ··· | ··· | 104 | TS2、TS3、TS13 | 3(2) | 0.451 | 86.92 | |||||||||
19 | TS1、TS6 | 2(2) | 0.362 | 79.53 | 105 | TS8、TS9、TS13 | 3(2) | 0.327 | 84.51 | |||||||||
··· | ··· | ··· | ··· | ··· |
表 7 SOP方案的柔性度和消纳率
Table 7 Flexibility degree and accommodation ratio of SOP schemes
方案编号 | SOP位置 | SOP台数 (端口数) | 柔性度Df | 消纳率λDG/% | 方案编号 | SOP位置 | SOP台数 (端口数) | 柔性度Df | 消纳率λDG/% | |||||||||
0 | 0.000 | 78.05 | 27 | TS1、TS14 | 2(2) | 0.343 | 87.81 | |||||||||||
1 | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | |||||||||
··· | ··· | ··· | ··· | ··· | 48 | TS3、TS13 | 2(2) | 0.303 | 85.89 | |||||||||
3 | TS3 | 1(2) | 0.239 | 81.22 | 49 | TS3、TS14 | 2(2) | 0.320 | 90.05 | |||||||||
··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | |||||||||
6 | TS6 | 1(2) | 0.238 | 78.60 | 80 | TS7、TS14 | 2(2) | 0.310 | 86.88 | |||||||||
7 | TS7 | 1(2) | 0.229 | 78.05 | ··· | ··· | ··· | ··· | ··· | |||||||||
8 | TS8 | 1(2) | 0.211 | 78.60 | 89 | TS9、TS13 | 2(2) | 0.254 | 83.96 | |||||||||
9 | TS9 | 1(2) | 0.189 | 79.28 | ··· | ··· | ··· | ··· | ··· | |||||||||
10 | TS10 | 1(2) | 0.191 | 79.28 | 97 | TS12、TS14 | 2(2) | 0.252 | 86.88 | |||||||||
11 | TS11 | 1(2) | 0.192 | 78.05 | ··· | ··· | ··· | ··· | ··· | |||||||||
12 | TS12 | 1(2) | 0.219 | 78.05 | 101 | TS12~14 | 1(3) | 0.252 | 86.88 | |||||||||
13 | TS13 | 1(2) | 0.203 | 82.72 | 102 | TS1、TS3、TS14 | 3(2) | 0.444 | 90.98 | |||||||||
14 | TS14 | 1(2) | 0.219 | 86.88 | 103 | TS1、TS4、TS6 | 3(2) | 0.454 | 80.47 | |||||||||
··· | ··· | ··· | ··· | ··· | 104 | TS2、TS3、TS13 | 3(2) | 0.451 | 86.92 | |||||||||
19 | TS1、TS6 | 2(2) | 0.362 | 79.53 | 105 | TS8、TS9、TS13 | 3(2) | 0.327 | 84.51 | |||||||||
··· | ··· | ··· | ··· | ··· |
1 | 李鹏, 王瑞, 冀浩然, 等. 低碳化智能配电网规划研究与展望[J]. 电力系统自动化, 2021, 45 (24): 10- 21. |
LI Peng, WANG Rui, JI Haoran, et al. Research and prospect of planning for low-carbon smart distribution network[J]. Automation of Electric Power Systems, 2021, 45 (24): 10- 21. | |
2 | 彭道刚, 税纪钧, 王丹豪, 等. “双碳”背景下虚拟电厂研究综述[J]. 发电技术, 2023, 44 (5): 602- 615. |
PENG Daogang, SHUI Jijun, WANG Danhao, et al. Review of virtual power plant under the background of "dual carbon"[J]. Power Generation Technology, 2023, 44 (5): 602- 615. | |
3 | 陈灵, 黄兴华, 张功林, 等. 考虑削峰填谷的分布式电源集群协同控制方法[J]. 智慧电力, 2023, 51 (4): 8- 15. |
CHEN Ling, HUANG Xinghua, ZHANG Gonglin, et al. Distributed generations clusters collaborative control method considering peak load shifting[J]. Smart Power, 2023, 51 (4): 8- 15. | |
4 | 黄龑, 郝迎鹏, 汪慧娴, 等. 基于二阶统一模型的分布式发电并网同步控制研究[J]. 中国电力, 2023, 56 (12): 41- 50. |
HUANG Yan, HAO Yingpeng, WANG Huixian, et al. Research on synchronization control of distributed generation based on second-order unified model[J]. Electric Power, 2023, 56 (12): 41- 50. | |
5 | 张晋铭, 欧阳森, 辛曦, 等. 高渗透率分布式电源影响下配电网极限线损计算方法[J]. 广东电力, 2023, 36 (4): 21- 31. |
ZHANG Jinming, OUYANG Sen, XIN XI, et al. Calculation method of limit line loss of distribution network under influence of high-penetration distributed generation[J]. Guangdong Electric Power, 2023, 36 (4): 21- 31. | |
6 | 林林馨妍, 朱俊澎, 袁越. 体系架构下的多微电网分布式韧性增强策略[J]. 中国电力, 2023, 56 (12): 87- 99. |
LIN Linxinyan, ZHU Junpeng, YUAN Yue. A distributed resilience enhancement strategy for multi-microgrids based on system of systems architecture[J]. Electric Power, 2023, 56 (12): 87- 99. | |
7 | 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41 (9): 2- 11. |
KANG Chongqing, YAO Liangzhong. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41 (9): 2- 11. | |
8 |
VERZIJLBERGH R A, DE VRIES L J, LUKSZO Z. Renewable energy sources and responsive demand. do we need congestion management in the distribution grid?[J]. IEEE Transactions on Power Systems, 2014, 29 (5): 2119- 2128.
DOI |
9 | 王成山, 季节, 冀浩然, 等. 配电系统智能软开关技术及应用[J]. 电力系统自动化, 2022, 46 (4): 1- 14. |
WANG Chengshan, JI Jie, JI Haoran, et al. Technologies and application of soft open points in distribution networks[J]. Automation of Electric Power Systems, 2022, 46 (4): 1- 14. | |
10 | 柔性多状态开关装置技术导则: T/CPSS 1003—2021[S]. |
11 |
LI P, JI H R, YU H, et al. Combined decentralized and local voltage control strategy of soft open points in active distribution networks[J]. Applied Energy, 2019, 241, 613- 624.
DOI |
12 | 肖峻, 刚发运, 蒋迅, 等. 柔性配电网: 定义、组网形态与运行方式[J]. 电网技术, 2017, 41 (5): 1435- 1446. |
XIAO Jun, GANG Fayun, JIANG Xun, et al. Flexible distribution network: definition, morphology and operation mode[J]. Power System Technology, 2017, 41 (5): 1435- 1446. | |
13 | 王莹, 肖峻, 曹严. 柔性配电网间歇性分布式发电消纳能力分析[J]. 电力系统自动化, 2022, 46 (13): 74- 83. |
WANG Ying, XIAO Jun, CAO Yan. Analysis on accommodation capability of intermittent distributed generation in flexible distribution network[J]. Automation of Electric Power Systems, 2022, 46 (13): 74- 83. | |
14 | 王灿, 吴耀文, 孙建军, 等. 基于柔性多状态开关的主动配电网双层负荷均衡方法[J]. 电力系统自动化, 2021, 45 (8): 77- 85. |
WANG Can, WU Yaowen, SUN Jianjun, et al. Bi-layer load balancing method in active distribution network based on flexible multi-state switch[J]. Automation of Electric Power Systems, 2021, 45 (8): 77- 85. | |
15 | 赵国鹏, 刘思远, 周昕炜, 等. 基于柔性多状态开关的配电网电压波动平抑策略[J]. 高电压技术, 2020, 46 (4): 1152- 1160. |
ZHAO Guopeng, LIU Siyuan, ZHUO Xinwei, et al. Voltage fluctuation suppression strategy based on the flexible multi-state switch in distribution network[J]. High Voltage Engineering, 2020, 46 (4): 1152- 1160. | |
16 | 徐全, 袁智勇, 于力, 等. 基于多端SOP的交直流混联配电网多目标运行优化方法[J]. 电力系统及其自动化学报, 2020, 32 (9): 42- 48, 54. |
XU Quan, YUAN Zhiyong, YU Li, et al. Multi-objective optimal operation method for ac/dc hybrid distribution network based on multi-terminal sop[J]. Proceedings of the CSU-EPSA, 2020, 32 (9): 42- 48, 54. | |
17 | 黄志强, 陈业伟, 毛志鹏, 等. 柔性多状态开关与分布式储能系统联合接入规划[J]. 电力系统自动化, 2022, 46 (14): 29- 37. |
HUANG Zhiqiang, CHEN Yewei, MAO Zhipeng, et al. Joint access planning of soft open point and distributed energy storage system[J]. Automation of Electric Power Systems, 2022, 46 (14): 29- 37. | |
18 | 孙充勃, 李敬如, 原凯, 等. 基于区间优化的配电网智能软开关与储能系统联合优化方法[J]. 高电压技术, 2021, 47 (1): 45- 54. |
SUN Chongbo, LI Jingru, YUAN Kai, et al. Two-stage optimization method of soft open point and energy storage system in distribution network based on interval optimization[J]. High Voltage Engineering, 2021, 47 (1): 45- 54. | |
19 | 马丽, 薛飞, 石季英, 等. 有源配电网分布式电源与智能软开关三层协调规划模型[J]. 电力系统自动化, 2018, 42 (11): 86- 93. |
MA Li, XUE Fei, SHI Jiying, et al. Tri-level coordinated planning model of distributed generator and intelligent soft open point for active distribution network[J]. Automation of Electric Power Systems, 2018, 42 (11): 86- 93. | |
20 | 陈泽西, 王朴, 肖万芳, 等. 计及可靠性收益的配电网柔性多状态开关及分布式电源综合优化配置[J]. 电力建设, 2022, 43 (6): 93- 100. |
CHEN Zexi, WANG Pu, XIAO Wanfang, et al. Integrated optimal configuration of flexible multi-state switch and distributed generation in distribution network considering reliability gain[J]. Electric Power Construction, 2022, 43 (6): 93- 100. | |
21 | 肖峻, 王莹, 祖国强. 电力电子化配电网的柔性度[J]. 电力系统自动化, 2023, 47 (6): 30- 39. |
XIAO Jun, WANG Ying, ZU Guoqiang. Flexibility degree for power-electronized distribution network[J]. Automation of Electric Power Systems, 2023, 47 (6): 30- 39. | |
22 | 王志强, 方正, 徐艺铭, 等. 计及重要用户失负荷风险的多端智能软开关优化配置方法[J]. 高电压技术, 2020, 46 (4): 1142- 1153. |
WANG Zhiqiang, FANG Zheng, XU Yiming, et al. Optimization configuration method for multi-terminal soft open point considering the load loss risk of important users[J]. High Voltage Engineering, 2020, 46 (4): 1142- 1153. | |
23 | 李岩, 陈夏, 李巍巍, 等. 基于智能软开关与联络开关并联的柔性配电网互联结构与控制技术研究[J]. 中国电机工程学报, 2022, 42 (13): 4749- 4760. |
LI Yan, CHEN Xia, LI Weiwei, et al. Research on interconnection structure and control technology of flexible distribution network based on soft open point in parallel with interconnection switch[J]. Proceedings of the CSEE, 2022, 42 (13): 4749- 4760. | |
24 |
SAATY T L. Decision making with the analytic hierarchy process[J]. International Journal of Services Sciences, 2008, 1 (1): 83.
DOI |
[1] | 贺春光, 王林峰, 曹媛, 安佳坤, 雷子健, 宋关羽, 冀浩然. 考虑综合收益的多电压等级配电网柔性互联装置协同规划方法[J]. 中国电力, 2025, 58(1): 78-84. |
[2] | 祝士焱, 许寅, 和敬涵, 王颖. 基于多微电网投影的配电系统协调恢复方法[J]. 中国电力, 2024, 57(9): 224-230. |
[3] | 邱洁, 梁财豪, 朱永强, 夏瑞华. 考虑氢能储运特性的配电网集群划分与氢能系统选址定容策略[J]. 中国电力, 2024, 57(8): 12-22. |
[4] | 张亚健, 陈茨, 薛飞, 马丽, 郑敏. 电制氢协同的含高比例光伏配电网两阶段电压随机优化控制[J]. 中国电力, 2024, 57(8): 23-35. |
[5] | 周专, 苗帅, 袁铁江. 提升风电消纳的绿氢钢铁冶炼系统动力学建模[J]. 中国电力, 2024, 57(8): 36-45. |
[6] | 孙东磊, 孙毅, 刘蕊, 孙鹏凯, 张玉敏. 计及多层级配电网的分布式新能源最大消纳空间分解测算[J]. 中国电力, 2024, 57(8): 108-116. |
[7] | 凡鹏飞, 李宝琴, 侯江伟, 李嵘, 宋崇明, 林凯骏. 配电网分布式电源经济可承载力评估[J]. 中国电力, 2024, 57(7): 196-202. |
[8] | 王家武, 赵佃云, 刘长锋, 陈康, 张玉敏. 基于目标级联法的多主体主动配电网自治协同优化[J]. 中国电力, 2024, 57(7): 214-226. |
[9] | 彭昊, 罗正经, 夏向阳, 曾刚, 欧宇健, 陈贵全, 王继军, 刘立洪. 储能系统多电池簇健康状态均衡控制策略[J]. 中国电力, 2024, 57(6): 45-52. |
[10] | 韩璟琳, 胡平, 侯若松, 陈志永, 李洪涛, 柴园园. 计及多光储一体机的配电网电压优化控制策略[J]. 中国电力, 2024, 57(6): 69-77, 152. |
[11] | 徐峰亮, 王克谦, 王文豪, 王鹏, 王文烨, 张帅, 赵凤展. 计及激励型需求响应的低压配电网混合储能优化配置[J]. 中国电力, 2024, 57(6): 90-101. |
[12] | 乔俊峰, 周爱华, 彭林, 王一清, 沈晓峰, 潘森, 杨佩, 黄晨宏. 基于多源数据深度融合的配电网运行评价方法[J]. 中国电力, 2024, 57(6): 193-203. |
[13] | 高政南, 姜楠, 陈启鑫, 徐江, 王海利, 辛力, 徐青贵. 德国电力市场能源转型建设及启示[J]. 中国电力, 2024, 57(6): 204-214. |
[14] | 李咸善, 丁胜彪, 李飞, 李欣. 考虑水电调节费用补偿的风光水联盟优化调度策略[J]. 中国电力, 2024, 57(5): 26-38. |
[15] | 张宇, 魏新迟, 冯凯辉, 时珊珊, 孟子涵, 梁媛. 计及分布式光伏承载力的配电网侧独立储能充放电策略[J]. 中国电力, 2024, 57(4): 111-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||