中国电力 ›› 2023, Vol. 56 ›› Issue (4): 130-137,145.DOI: 10.11930/j.issn.1004-9649.202205056

• 综合能源技术 • 上一篇    下一篇

基于代理模型加速的园区综合能源系统双目标滚动运行优化

胡筱曼1, 田伟堃2, 宋关羽2, 于浩2   

  1. 1. 广东电网有限责任公司中山供电局, 广东 中山 528400;
    2. 智能电网教育部重点实验室(天津大学), 天津 300072
  • 收稿日期:2022-05-19 修回日期:2023-02-25 发布日期:2023-04-26
  • 作者简介:胡筱曼(1988-),女,硕士,工程师,从事智能配电网技术研究,E-mail:498910962@qq.com;田伟堃(1997-),男,硕士研究生,从事综合能源系统运行优化研究,E-mail:tianwk@tju.edu.cn;宋关羽(1990-),男,通信作者,博士,高级工程师,从事智能配电网运行优化研究,E-mail:gysong@tju.edu.cn;于浩(1988-),男,博士,副教授,从事城市能源系统运行控制研究,E-mail:tjuyh@tju.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2020YFB0906000)。

Bi-objective Rolling Operation Optimization Based on Surrogate Model Acceleratiy of Community-Level Integrated Energy Systems

HU Xiaoman1, TIAN Weikun2, SONG Guanyu2, YU Hao2   

  1. 1. Zhongshan Power Supply Bureau, Guangdong Power Grid Co., Ltd., Zhongshan 528400, China;
    2. Key Laboratory of Smart Grid of Ministry of Education (Tianjin University), Tianjin 300072, China
  • Received:2022-05-19 Revised:2023-02-25 Published:2023-04-26
  • Supported by:
    This work is supported by the National Key Research and Development Program of China (No.2020YFB0906000).

摘要: 高比例分布式能源的大量接入显著增加了园区综合能源系统运行的不确定性。同时,园区能源系统运行需要兼顾绿色、经济运行目标,成为典型的双目标优化问题。为此,提出了一种基于代理模型加速的园区综合能源系统双目标滚动优化调度算法。首先,以基于三角分解空间搜索的双目标优化算法为基础,利用代理模型对待搜索空间是否有解进行快速预判,有效提高了空间搜索优化效率;其次,进一步将代理模型加速的双目标优化方法应用于模型预测控制框架,在日内运行中根据不断更新的预测信息滚动优化双目标运行策略,提高了对源荷不确定性的应对能力;最后,以某实际园区综合能源系统为例,验证了所提方法的可行性和有效性。

关键词: 园区综合能源系统, 代理模型, 滚动优化, 双目标优化, 改进三角分解法

Abstract: Uncertainties in community-level integrated energy systems (CIESs) have been increasing due to the high penetration of distributed generation. Besides, the economic and environmental operation of CIESs should be considered at the same time, making its optimal operation problem a typical bi-objective one. In this paper, a bi-objective rolling scheduling method for CIES is proposed, based on the triangle splitting searching algorithm. Firstly, the surrogate model is employed to explore the feasible region. Then the surrogate model accelerated bi-objective optimization method is applied in the framework of model predictive control (MPC), in which the operation strategy is optimized according to the updated forecasting information. Finally, the proposed method is verified by a case study of a practical CIES to demonstrate its effectiveness and feasibility.

Key words: community-level integrated energy system (CIES), surrogate model, rolling optimization, bi-objective optimization, improved triangle splitting algorithm