[1] 刘振亚. 特高压电网[M]. 北京: 中国经济出版社, 2005. [2] 刘振亚. 特高压直流输电理论[M]. 北京: 中国电力出版社, 2009. [3] 焦瑞浩,丁剑,任建文,等. 适应大规模清洁能源并网和传输的未来新型直流电网研究[J]. 智慧电力, 2019, 47(6): 9-18 JIAO Ruihao, DING Jian, REN Jianwei, et al. Future new DC power grid for large-scale new energy integration and transmission[J]. Smart Power, 2019, 47(6): 9-18 [4] 唐晓骏, 张正卫, 韩民晓, 等. 适应多直流馈入受端电网的柔性直流配置方法[J]. 电力系统保护与控制, 2019, 47(10): 57-64 TANG Xiaojun, ZHANG Zhengwei, HAN Minxiao, et al. VSC-HVDC configuration method suitable for multi-DC feeding receiving power grid[J]. Power System Protection and Control, 2019, 47(10): 57-64 [5] 吕文杰, 储佳伟, 吴健, 等. 基于模型预测控制的VSC-HVDC自适应控制策略[J]. 电力科学与技术学报, 2020, 35(1): 122-129 LV Wenjie, CHU Jiawei, WU Jian, et al. Investigation of a VSC-HVDC adaptive control strategy based on the model prediction strategy[J]. Journal of Electric Power Science and Technology, 2020, 35(1): 122-129 [6] 郭知非, 李峰, 郑秀波, 等. 广东在运直流柔性化改造提升系统稳定效果研究[J]. 南方电网技术, 2019, 13(9): 6-12 GUO Zhifei, LI Feng, ZHENG Xiubo, et al. Study of the stability improvements of VSC-based refurbishment of conventional HVDC in Guangdong power grid[J]. Southern Power System Technology, 2019, 13(9): 6-12 [7] DU B X, SU J G, HAN T. Effects of mechanical stretching on electrical treeing characteristics in EPDM[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(1): 84-93. [8] LIU Y, WANG X. Research on property variation of silicone rubber and EPDM rubber under interfacial multi-stresses[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(6): 2027-2035. [9] MONTANARI G C, MAZZANTI G, PALMIERI F, et al. Space-charge trapping and conduction in LDPE, HDPE and XLPE[J]. Journal of Physics D: Applied Physics, 2001, 34(18): 2902-2911. [10] FUKUMA M, FUKUNAGA K, MAENO T. Space charge dynamics in LDPE films immediately before breakdown[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(2): 304-306. [11] WU K, WANG Y, WANG X, et al. Effect of space charge in the aging law of cross-linked polyethylene materials for high voltage DC cables[J]. IEEE Electrical Insulation Magazine, 2017, 33(4): 53-59. [12] FLEMING R J. Space charge profile measurement techniques: recent advances and future directions[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(5): 967-978. [13] IMBURGIA A, MICELI R, SANSEVERINO E R, et al. Review of space charge measurement systems: acoustic, thermal and optical methods[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(5): 3126-3142. [14] CHIU F C. A review on conduction mechanisms in dielectric films[J]. Advances in Materials Science and Engineering, 2014, 2014: 1-18. [15] LEWIS T J. Interfaces: nanometric dielectrics[J]. Journal of Physics D: Applied Physics, 2005, 38(2): 202-212. [16] SONNONSTINE T J, PERLMAN M M. Surface-potential decay in insulators with field-dependent mobility and injection efficiency[J]. Journal of Applied Physics, 1975, 46(9): 3975-3981. [17] PERLMAN M M, SONNONSTINE T J, ST PIERRE J A. Drift mobility determinations using surface-potential decay in insulators[J]. Journal of Applied Physics, 1976, 47(11): 5016-5021. [18] COELHO R, ALADENIZE B, CORNET N, et al. On the transient potential in insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(5): 760-770. [19] SJOSTEDT H, GUBANSKI S M, SERDYUK Y V. Charging characteristics of EPDM and silicone rubbers deduced from surface potential measurements[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(3): 696-703. [20] KEPLER R G. Charge carrier production and mobility in anthracene crystals[J]. Physical Review, 1960, 119(4): 1226-1229. [21] HAYASHI K, YOSHINO K, INUISHI Y. Carrier mobilities in insulating polymers measured by time of flight method[J]. Japanese Journal of Applied Physics, 1975, 14(1): 39-45. [22] MONTANARI G C, MORSHUIS P H F. Space charge phenomenology in polymeric insulating materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 754-767. [23] MAZZANTI G, MONTANARI G C, PALMIERI F, et al. Apparent trap-controlled mobility evaluation in insulating polymers through depolarization characteristics derived by space charge measurements[J]. Journal of Applied Physics, 2003, 94(9): 5997-6004. [24] CHENG C H, WU K, SU R, et al. A new method for carrier mobility measurement in oil immersed cellulose paper insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(1): 308-313. [25] SU R, WU K, CHENG C H, et al. Measurement of carrier mobility in polyethylene based on the pulsed electro-acoustic method[C]//2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). Cancun, Mexico. IEEE, 2018: 30-33. [26] DISSADO L A, FOTHERGILL J C. Electrical degradation and breakdown in polymers[M]. The Institution of Engineering and Technology, Michael Faraday House, Six Hills Way, Stevenage SG1 2AY, UK: IET, 1992.
|