[1] 丁乐群, 翟绘景, 黄兴, 等. 煤电价格联动机制对发电成本-利润影响分析[J]. 中国电力, 2007, 40(9):19-22 DING Lequn, ZHAI Huijing, HUANG Xing, et al. Analysis of the impact of coal electricity price linkage mechanism on generating cost and profit[J]. Electric Power, 2007, 40(9):19-22 [2] 国家能源局. 电站煤粉锅炉燃煤掺烧技术导则:DL/T 1445-2015[S]. 北京:中国电力出版社, 2015. [3] 杨志斌. 电厂锅炉掺烧褐煤实验研究与工程应用[D]. 北京:华北电力大学, 2014. [4] 王春昌, 阮士周, 宋太纪, 等. 烟煤锅炉两种方式掺烧褐煤的工程应用[J]. 中国电力, 2010, 43(10):35-38 WANG Chunchang, RUAN Shizhou, SONG Taiji, et al. Application of two ways to mix brown coal in bituminous coal fired boiler[J]. Electric Power, 2010, 43(10):35-38 [5] 陈宝康, 陈敏, 王小华, 等. 350 MW机组燃用烟煤锅炉掺烧褐煤的试验研究[J]. 热力发电, 2013, 42(6):35-39 CHEN Baokang, CHEN Min, WANG Xiaohua, et al. Experimental study on lignite and bituminous coal co-combustion in a bituminous coal fired 350 MW unit boiler[J]. Thermal Power Generation, 2013, 42(6):35-39 [6] 张振杰, 王彦海. 掺烧褐煤对350 MW机组烟煤锅炉经济性影响研究[J]. 东北电力技术, 2011, 32(3):17-19 ZHANG Zhenjie, WANG Yanhai. Study on the economic impact of blending lignite on bituminous coal fired boiler of 350 MW unit[J]. Northeastern Power Technology, 2011, 32(3):17-19 [7] 赵长江. 350 MW超临界褐煤锅炉掺烧劣质烟煤试验研究[J]. 内蒙古电力技术, 2016, 34(5):21-25 ZHAO Changjiang. Test and research of inferior bituminous coal blending on 350 MW supercritical lignite boilers[J]. Inner Mongolia Electric Power, 2016, 34(5):21-25 [8] 解继刚. 350 MW燃煤机组掺烧褐煤的配煤分析与运行特性研究[D]. 大连:大连理工大学, 2009. [9] 王万潮. 350 MW机组锅炉褐煤掺烧技术探讨[J]. 应用能源技术, 2013(7):19-23 WANG Wanchao. Discussion of lignite combustion technology to 350 MW unit[J]. Applied Energy Technology, 2013(7):19-23 [10] 赵振宁, 佟义英, 方占岭, 等. 600 MW超临界机组掺烧印尼褐煤、越南无烟煤试验研究[J]. 热能动力工程, 2009, 24(4):513-518 ZHAO Zhenning, TONG Yiying, FANG Zhanling, et al. Experimental study of mixed combustion of indonesia-originated lignite and vietnam-originated anthracite in a 600 MW supercritical unit[J]. Journal of Engineering for Thermal Energy and Power, 2009, 24(4):513-518 [11] 苏攀, 张健, 曹瑞杰, 等. 600 MW电站锅炉中印尼褐煤掺烧试验及数值模拟[J]. 热能动力工程, 2018, 33(2):79-86 SU Pan, ZHANG Jian, CAO Ruijie, et al. Indonesian brown coal blending combustion test and numerical simulation of 600 MW power plant boiler[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(2):79-86 [12] 李德波, 沈跃良. 前后对冲旋流燃煤锅炉CO和NOx分布规律的试验研究[J]. 动力工程学报, 2013, 33(7):502-506 LI Debo, SHEN Yueliang. Experimental study on CO and NOx emission of a swirl-opposed coal-fired boiler[J]. Journal of Chinese Society of Power Engineering, 2013, 33(7):502-506 [13] 卢熠, 王西慎, 陈献春, 等. 大型燃煤机组低氮运行下CO与O2综合控制技术研究[J]. 节能技术, 2015, 33(3):251-253 LU Yi, WANG Xishen, CHEN Xianchun, et al. Research on comprehensive control technology of CO and O2 for large coal-fired units under low nitrogen operation[J]. Energy Saving Technology, 2015, 33(3):251-253 [14] 赵宁, 曹洪涛, 李晓金, 等. 基于O2和CO信号修正的燃烧优化控制[J]. 电力科学与工程, 2004(3):23-25 ZHAO Ning, CAO Hongtao, LI Xiaojin, et al. Optimizing combustion control system based on O2 and CO signals[J]. Electric Power Science and Engineering, 2004(3):23-25 [15] 刘贵锋, 韩雪松, 刘滨. 基于混煤掺烧的1140吨电站锅炉节能优化试验研究[C]//2016清洁高效燃煤发电技术交流研讨会论文集, 2016. [16] 张磊. 除焦剂在大型火电机组锅炉的应用与研究[J]. 华电技术, 2016, 38(4):18-21 [17] 赵俊彬, 田建, 周锋. 除焦剂在电厂锅炉中的应用[J]. 电力安全技术, 2012, 14(9):64-65 |