[1] 陈刚, 方庆艳, 张成, 等. 电站锅炉配煤掺烧及经济运行[M]. 北京:中国电力出版社, 2013. [2] 刘振亚. 中国电力与能源[M]. 北京:中国电力出版社, 2012. [3] LYU J, GUNASEKARAN A, CHEN C Y, et al. A goal programming model for the coal blending problem[J]. Computers & Industry Engineering, 1995, 28(4):861-868. [4] HARDING N S, COOPER S A. Boiler performance and cost analysis of fuels and fuel blends using the Fuel Quality Advisor[J]. Fuel Processing Technology, 2016, 141(2):185-195. [5] KIM J K, LEE H D, KIM H S, et al. Combustion possibility of low rank Russian peat as a blended fuel of pulverized coal fired power plant[J]. Journal of Industrial & Engineering Chemistry, 2014, 20(4):1752-1760. [6] SU S, POHL J H, HOLCOMBE D, et al. Techniques to determine ignition, flame stability and burnout of blended coals in p.f. power station boilers[J]. Progress in Energy & Combustion Science, 2001, 27(1):75-98. [7] LI J, ZHU M, ZHANG Z, et al. Effect of coal blending and ashing temperature on ash sintering and fusion characteristics during combustion of Zhundong lignite[J]. Fuel, 2017, 195:131-142. [8] AKIYAMA K, PAK H, TAKUBO Y, et al. Ash deposition behavior of upgraded brown coal in pulverized coal combustion boiler[J]. Fuel Processing Technology, 2011, 92(7):1355-1361. [9] 陈庆文, 马晓茜, 刘翱. 大型电站锅炉混煤掺烧的NOx排放特性预测与运行优化[J]. 中国电机工程学报, 2009, 29(23):20-26 CHEN Qingwen, MA Xiaoqian, LIU Ao. Prediction and operation optimization for NOx emission property of large-scale mixed coal-fired utility boiler[J]. Proceedings of the CSEE, 2009, 29(23):20-26 [10] 徐少波, 曾宪鹏, 于敦喜, 等. 基于大型电厂配煤方案的颗粒物生成实验研究[J]. 煤炭学报, 2015, 40(3):684-689 XU Shaobo, ZENG Xianpeng, YU Dunxi, et al. Experimental investigation on particle formation in combustion of coal blends based on a large-scale power plant scheme[J]. Journal of China Coal Society, 2015, 40(3):684-689 [11] BAEK S H, PARK H Y, KO S H. The effect of the coal blending method in a coal fired boiler on carbon in ash and NOx emission[J]. Fuel, 2014, 128(14):62-70. [12] YIN C, LUO Z, ZHOU J, et al. A novel non-linear programming-based coal blending technology for power plants[J]. Chemical Engineering Research & Design, 2000, 78(1):118-124. [13] 刘福国, 郝卫东, 韩小岗, 等. 基于烟气成分分析的电站锅炉入炉煤质监测模型[J]. 燃烧科学与技术, 2002, 8(5):441-445 LIU Fuguo, HAO Weidong, HAN Xiaogang, et al. Model of monitoring coal grade for utility boiler basing on flue gas compositional measurement[J]. Journal of Combustion Science and Technology, 2002, 8(5):441-445 [14] 汤琪. 基于数字图像的火焰测量及煤质辨识[D]. 杭州:浙江大学, 2014. [15] ZHANG J, WANG Q, WEI Y, et al. Numerical modeling and experimental investigation on the use of brown coal and its beneficiated semicoke for coal blending combustion in a 600 MWe utility furnace[J]. Energy & Fuels, 2015, 29(2):1196-1209. [16] 王祝成. 电厂锅炉掺烧褐煤和印尼煤的经济性分析[J]. 能源技术经济, 2012, 24(2):28-32 WANG Zhucheng. Economic analysis of blending lignitous coal and Indonesia coal for the power plant boiler[J]. Energy Technology and Economics, 2012, 24(2):28-32 [17] 梁学东, 谢昆. 1000 MW机组锅炉低热值煤种掺烧的经济性分析[J]. 热力发电, 2014, 43(11):1-5 LIANG Xuedong, XIE Kun. Economy analysis on co-combustion with low calorific coal in a 1000 MW coal fired boiler unit[J]. Thermal Power Generation, 2014, 43(11):1-5 [18] 中华人民共和国国家质量监督检察检疫总局, 中国国家标准化管理委员会. 汽轮机热力性能验收试验规程:GB/T 8117-2014[S]. 北京:中国标准出版社, 2014. [19] 中华人民共和国国家质量监督检察检疫总局, 中国国家标准化管理委员会. 电站锅炉性能试验规程:GB/T 10184-2015[S]. 北京:中国标准出版社, 2016. [20] 国家能源局. 火力发电厂技术经济指标计算方法:DL/T 904-2015[S]. 北京:中国电力出版社, 2015. |