Electric Power ›› 2025, Vol. 58 ›› Issue (8): 31-40.DOI: 10.11930/j.issn.1004-9649.202411079
• Flexible Resource Planning Operation and Dynamic Control of AC/DC Power Distribution System • Previous Articles Next Articles
					
													LUO Chao1(
), NI Tian2(
), CHEN Lingyun1(
), KANG Yi1(
), HOU Hui2(
), WU Xixiu2(
)
												  
						
						
						
					
				
Received:2024-11-25
															
							
															
							
															
							
																	Online:2025-08-26
															
							
							
																	Published:2025-08-28
															
							
						Supported by:LUO Chao, NI Tian, CHEN Lingyun, KANG Yi, HOU Hui, WU Xixiu. Panoramic Optimal Prediction of Load 8760 Curve Guided by Gaussian Distribution[J]. Electric Power, 2025, 58(8): 31-40.
| 类别 | 模型 | 简称 | ||
| 基准模型 | 2 021年实际负荷8760曲线 | M1 | ||
| 特征映射模型 | RF | M2 | ||
| SVM | M3 | |||
| KNN | M4 | |||
| 自相关回归模型 | LSTM | M5 | ||
| GRU | M6 | |||
| Transformer | M7 | |||
| 概率优化模型 | 本文所提模型 | M8 | 
Table 1 Load indicators
| 类别 | 模型 | 简称 | ||
| 基准模型 | 2 021年实际负荷8760曲线 | M1 | ||
| 特征映射模型 | RF | M2 | ||
| SVM | M3 | |||
| KNN | M4 | |||
| 自相关回归模型 | LSTM | M5 | ||
| GRU | M6 | |||
| Transformer | M7 | |||
| 概率优化模型 | 本文所提模型 | M8 | 
| 模型 | 算例 | 超参数 | 寻优结果 | |||
| M2 | 1 | 决策树数量 | 96 | |||
| 最大深度 | 12 | |||||
| 划分最小样本数 | 21 | |||||
| 叶节点最小样本数 | 1 | |||||
| 2 | 决策树数量 | 148 | ||||
| 最大深度 | 100 | |||||
| 划分最小样本数 | 2 | |||||
| 叶节点最小样本数 | 89 | |||||
| M3 | 1 | 惩罚参数 | 200 | |||
| 损失函数宽度 | 0.1 | |||||
| 2 | 惩罚参数 | 200 | ||||
| 损失函数宽度 | 0.1 | |||||
| M4 | 1 | 最近邻数量 | 61 | |||
| 2 | 最近邻数量 | 100 | ||||
| M5 | 1 | 神经元数量 | 64/30 | |||
| 时间步长 | 24 | |||||
| 2 | 神经元数量 | 55/21 | ||||
| 时间步长 | 18 | |||||
| M6 | 1 | 神经元数量 | 100/53 | |||
| 时间步长 | 7 | |||||
| 2 | 神经元数量 | 98/67 | ||||
| 时间步长 | 14 | |||||
| M7 | 1 | 维度 | 200 | |||
| 头数 | 8 | |||||
| 2 | 维度 | 134 | ||||
| 头数 | 8 | 
Table 2 Model hyper-parameter Settings
| 模型 | 算例 | 超参数 | 寻优结果 | |||
| M2 | 1 | 决策树数量 | 96 | |||
| 最大深度 | 12 | |||||
| 划分最小样本数 | 21 | |||||
| 叶节点最小样本数 | 1 | |||||
| 2 | 决策树数量 | 148 | ||||
| 最大深度 | 100 | |||||
| 划分最小样本数 | 2 | |||||
| 叶节点最小样本数 | 89 | |||||
| M3 | 1 | 惩罚参数 | 200 | |||
| 损失函数宽度 | 0.1 | |||||
| 2 | 惩罚参数 | 200 | ||||
| 损失函数宽度 | 0.1 | |||||
| M4 | 1 | 最近邻数量 | 61 | |||
| 2 | 最近邻数量 | 100 | ||||
| M5 | 1 | 神经元数量 | 64/30 | |||
| 时间步长 | 24 | |||||
| 2 | 神经元数量 | 55/21 | ||||
| 时间步长 | 18 | |||||
| M6 | 1 | 神经元数量 | 100/53 | |||
| 时间步长 | 7 | |||||
| 2 | 神经元数量 | 98/67 | ||||
| 时间步长 | 14 | |||||
| M7 | 1 | 维度 | 200 | |||
| 头数 | 8 | |||||
| 2 | 维度 | 134 | ||||
| 头数 | 8 | 
| 1 |  
											孙庆超, 李嘉靓, 江万里, 等. 基于数据驱动时空网络的城市中长期电力负荷预测[J]. 中国电力, 2025, 58 (3): 168- 174. 
																							 DOI  | 
										
|  
											SUN Qingchao, LI Jialiang, JIANG Wanli, et al. Mid-long term urban power load forecasting based on data-driven spatio-temporal networks[J]. Electric Power, 2025, 58 (3): 168- 174. 
																							 DOI  | 
										|
| 2 |  
											李丹, 贺帅, 颜伟, 等. 考虑动态时间锚点和典型特征约束的年日均负荷曲线预测[J]. 中国电力, 2024, 57 (11): 36- 47. 
																							 DOI  | 
										
|  
											LI Dan, HE Shuai, YAN Wei, et al. Annual daily average load curve prediction considering dynamic time anchors and typical feature constraints[J]. Electric Power, 2024, 57 (11): 36- 47. 
																							 DOI  | 
										|
| 3 | 曲晓黎, 尤琦, 李文晴, 等. 气象因子相对危险度在电网用电负荷预测中的应用[J]. 南方能源建设, 2024, 11 (1): 166- 175. | 
| QU Xiaoli, YOU Qi, LI Wenqing, et al. Application of relative risk of meteorological factors in power grid electricity load forecasting[J]. Southern Energy Construction, 2024, 11 (1): 166- 175. | |
| 4 | 张明泽, 栾文鹏, 艾欣, 等. 基于边缘计算的台区短期负荷预测方法[J]. 电测与仪表, 2024, 61 (4): 93- 99. | 
| ZHANG Mingze, LUAN Wenpeng, AI Xin, et al. Short-term substation load forecasting method based on edge computing[J]. Electrical Measurement & Instrumentation, 2024, 61 (4): 93- 99. | |
| 5 | 杨坚, 赵洁, 汤义勤, 等. 基于序列分解的母线负荷降噪预测方法[J]. 浙江电力, 2023, 42 (12): 81- 87. | 
| YANG Jian, ZHAO Jie, TANG Yiqin, et al. A noise reduction forecasting method of bus load based on sequence decomposition[J]. Zhejiang Electric Power, 2023, 42 (12): 81- 87. | |
| 6 |  
											RUBASINGHE O, ZHANG X N, CHAU T K, et al. A novel sequence to sequence data modelling based CNN-LSTM algorithm for three years ahead monthly peak load forecasting[J]. IEEE Transactions on Power Systems, 2024, 39 (1): 1932- 1947. 
																							 DOI  | 
										
| 7 |  
											BASHIRI BEHMIRI N, FEZZI C, RAVAZZOLO F. Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks[J]. Energy, 2023, 278, 127831. 
																							 DOI  | 
										
| 8 | 史笑宇, 王欣, 王钢. 基于PSO-SVM组合模型的短期电力需求预测[J]. 东北电力大学学报, 2024, 44 (6): 74- 81. | 
| SHI Xiaoyu, WANG Xin, WANG Gang. Short-term power demand forecasting based on PSO-SVM combined model[J]. Journal of Northeast Electric Power University, 2024, 44 (6): 74- 81. | |
| 9 |  
											LUO J, HONG T, GAO Z M, et al. A robust support vector regression model for electric load forecasting[J]. International Journal of Forecasting, 2023, 39 (2): 1005- 1020. 
																							 DOI  | 
										
| 10 |  
											XIE Y L, JIN M P, ZOU Z P, et al. Real-time prediction of docker container resource load based on a hybrid model of ARIMA and triple exponential smoothing[J]. IEEE Transactions on Cloud Computing, 2022, 10 (2): 1386- 1401. 
																							 DOI  | 
										
| 11 |  
											TANG T, JIANG W H, ZHANG H, et al. GM(1, 1) based improved seasonal index model for monthly electricity consumption forecasting[J]. Energy, 2022, 252, 124041. 
																							 DOI  | 
										
| 12 |  
											赵会茹, 赵一航, 郭森. 基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测[J]. 中国电力, 2020, 53 (6): 48- 55. 
																							 DOI  | 
										
|  
											ZHAO Huiru, ZHAO Yihang, GUO Sen. Short-term load forecasting based on complementary ensemble empirical mode decomposition and long short-term memory[J]. Electric Power, 2020, 53 (6): 48- 55. 
																							 DOI  | 
										|
| 13 |  
											吴军英, 路欣, 刘宏, 等. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57 (6): 131- 140. 
																							 DOI  | 
										
|  
											WU Junying, LU Xin, LIU Hong, et al. Ultra-short-term multi-region power load forecasting based on spearman-GCN-GRU model[J]. Electric Power, 2024, 57 (6): 131- 140. 
																							 DOI  | 
										|
| 14 | 刘杰, 从兰美, 夏远洋, 等. 基于DBO-VMD和IWOA-BILSTM神经网络组合模型的短期电力负荷预测[J]. 电力系统保护与控制, 2024, 52 (8): 123- 133. | 
| LIU Jie, CONG Lanmei, XIA Yuanyang, et al. Short-term power load prediction based on DBO-VMD and an IWOA-BILSTM neural network combination model[J]. Power System Protection and Control, 2024, 52 (8): 123- 133. | |
| 15 |  
											HE X, ZHAO W L, GAO Z J, et al. A hybrid prediction interval model for short-term electric load forecast using Holt-Winters and Gate Recurrent Unit[J]. Sustainable Energy, Grids and Networks, 2024, 38, 101343. 
																							 DOI  | 
										
| 16 |  
											DONG H J, ZHU J Z, LI S L, et al. Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks[J]. Applied Energy, 2023, 329, 120281. 
																							 DOI  | 
										
| 17 |  
											HUANG X S, WU D, BOULET B. MetaProbformer for charging load probabilistic forecasting of electric vehicle charging stations[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (10): 10445- 10455. 
																							 DOI  | 
										
| 18 | 王炜, 冯斌, 黄刚, 等. 基于自注意力编码器和深度神经网络的短期净负荷预测[J]. 中国电机工程学报, 2023, 43 (23): 9072- 9084. | 
| WANG Wei, FENG Bin, HUANG Gang, et al. Short-term net load forecasting based on self-attention encoder and deep neural network[J]. Proceedings of the CSEE, 2023, 43 (23): 9072- 9084. | |
| 19 | 罗澍忻, 麻敏华, 蒋林, 等. 考虑多时间尺度数据的中长期负荷预测方法[J]. 中国电机工程学报, 2020, 40 (S1): 11- 19. | 
| LUO Shuxin, MA Minhua, JIANG Lin, et al. Medium and long-term load forecasting method considering multi-time scale data[J]. Proceedings of the CSEE, 2020, 40 (S1): 11- 19. | |
| 20 |  
											康重庆, 夏清, 张伯明. 电力系统负荷预测研究综述与发展方向的探讨[J]. 电力系统自动化, 2004, 28 (17): 1- 11. 
																							 DOI  | 
										
|  
											KANG Chongqing, XIA Qing, ZHANG Boming. Review of power system load forecasting and its development[J]. Automation of Electric Power Systems, 2004, 28 (17): 1- 11. 
																							 DOI  | 
										|
| 21 |  
											STAGGE J H, TALLAKSEN L M, GUDMUNDSSON L, et al. Candidate distributions for climatological drought indices (SPI and SPEI)[J]. International Journal of Climatology, 2015, 35 (13): 4027- 4040. 
																							 DOI  | 
										
| 22 |  
											JIANG Z X, ZHANG L L, JI T Y. NSDAR: a neural network-based model for similar day screening and electric load forecasting[J]. Applied Energy, 2023, 349, 121647. 
																							 DOI  | 
										
| 23 |  
											KHAN W, SOMERS W, WALKER S, et al. Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation[J]. Energy, 2023, 283, 129213. 
																							 DOI  | 
										
| 24 |  
											唐旭辰, 潮铸, 段秦尉, 等. 基于分层测量数据的高压变电站概率负荷预测方法[J]. 中国电力, 2023, 56 (8): 143- 150. 
																							 DOI  | 
										
|  
											TANG Xuchen, CHAO Zhu, DUAN Qinwei, et al. Probabilistic load forecasting method of high voltage substation based on hierarchical measurement data[J]. Electric Power, 2023, 56 (8): 143- 150. 
																							 DOI  | 
										|
| 25 | 卢皓天, 刘少鹏, 王凯. 基于多目标粒子群算法的光伏制氢系统容量优化方法[J]. 南方能源建设, 2025, 12 (3): 133- 143. | 
| LU Haotian, LIU Shaopeng, WANG Kai. Capacity optimization method for photovoltaic hydrogen production systems based on multi-objective particle swarm algorithm[J]. Southern Energy Construction, 2025, 12 (3): 133- 143. | |
| 26 | 刘子祺, 苏婷婷, 何佳阳, 等. 基于多目标粒子群算法的配电网储能优化配置研究[J]. 综合智慧能源, 2023, 45 (6): 9- 16. | 
| LIU Ziqi, SU Tingting, HE Jiayang, et al. Research on the optimal allocation of energy storage in distribution network based on multi-objective particle swarm optimization algorithm[J]. Integrated Intelligent Energy, 2023, 45 (6): 9- 16. | 
| No related articles found! | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
