Electric Power ›› 2025, Vol. 58 ›› Issue (7): 137-146.DOI: 10.11930/j.issn.1004-9649.202503012
• New-Type Power Grid • Previous Articles Next Articles
					
													LIU Ren1(
), ZENG Yu2(
), HU Anlong3(
), TANG Bo1,2(
)
												  
						
						
						
					
				
Received:2025-03-07
															
							
															
							
															
							
																	Online:2025-07-30
															
							
							
																	Published:2025-07-28
															
							
						Supported by:LIU Ren, ZENG Yu, HU Anlong, TANG Bo. Modified Static Hysteresis Simulation Method for Electrical Equipment with Silicon Steel Core[J]. Electric Power, 2025, 58(7): 137-146.
| 类型 | 牌号 | 长度/ mm  | 宽度/ mm  | 厚度/ mm  | 密度/ (kg·m–3)  | |||||
| 取向硅钢样品 | 23QG100 | 300 | 30 | 0.23 | ||||||
| 无取向硅钢样品 | 35W233 | 300 | 30 | 0.35 | 
Table 1 Parameters of oriented and non-oriented silicon steel samples
| 类型 | 牌号 | 长度/ mm  | 宽度/ mm  | 厚度/ mm  | 密度/ (kg·m–3)  | |||||
| 取向硅钢样品 | 23QG100 | 300 | 30 | 0.23 | ||||||
| 无取向硅钢样品 | 35W233 | 300 | 30 | 0.35 | 
| Ms/T | hZee/T | μani/(A·m–1) | b2/J | b4/J | b6/J | b8/J | b10/J | b12/J | ||||||||
| 1.52 | 2.58 | 93.53 | 26.6 | 116 | –625.9 | – | 866.7 | 
Table 2 Parameters of the simplified LLG equation for the non-oriented silicon steel samples in high magnetic flux density regions (Bm=1.3~1.5 T)
| Ms/T | hZee/T | μani/(A·m–1) | b2/J | b4/J | b6/J | b8/J | b10/J | b12/J | ||||||||
| 1.52 | 2.58 | 93.53 | 26.6 | 116 | –625.9 | – | 866.7 | 
| Ms/T | hZee/T | μani/(A·m–1) | b2/J | b4/J | b6/J | b8/J | b10/J | b12/J | ||||||||
| 1.82 | 3.17 | 28.33 | 31.8 | 32.9 | –125.7 | 281.3 | –337.4 | 185.6 | 
Table 3 Parameters of the simplified LLG equation for the grain oriented silicon steel samples in high magnetic flux density regions (Bm=1.2~1.8 T)
| Ms/T | hZee/T | μani/(A·m–1) | b2/J | b4/J | b6/J | b8/J | b10/J | b12/J | ||||||||
| 1.82 | 3.17 | 28.33 | 31.8 | 32.9 | –125.7 | 281.3 | –337.4 | 185.6 | 
| 参 数 | 取向硅钢片 | 无取向硅钢片 | ||
| 饱和磁化强度Ms/(A·m–1) | 1.21×106 | 1.45×106 | ||
| 形状参数a/(A·m–1) | 26.924 | 15.284 | ||
| 可逆磁化参数c | 
Table 4 Fixed parameters of J-A models of the oriented and non-oriented silicon steel samples
| 参 数 | 取向硅钢片 | 无取向硅钢片 | ||
| 饱和磁化强度Ms/(A·m–1) | 1.21×106 | 1.45×106 | ||
| 形状参数a/(A·m–1) | 26.924 | 15.284 | ||
| 可逆磁化参数c | 
| 磁密幅值Bm/T | 计算值Wi,calc/(J·m–3) | 实测值Wi,meas/(J·m–3) | 相对误差σ/% | |||
| 1.5 | 271.95 | 278.14 | 2.96 | |||
| 1.4 | 219.64 | 229.47 | 4.28 | |||
| 1.2 | 153.68 | 153.68 | 1.31 | |||
| 1.0 | 116.04 | 107.23 | 4.41 | |||
| 0.8 | 74.00 | 73.99 | 0.01 | |||
| 0.6 | 46.62 | 46.67 | 0.08 | |||
| 0.4 | 23.34 | 24.20 | 3.52 | |||
| 0.2 | 6.38 | 6.54 | 2.30 | 
Table 5 Simulated and measured values of static hysteresis loss of unoriented silicon steel wafer samples simulated based on simplified LLG equations
| 磁密幅值Bm/T | 计算值Wi,calc/(J·m–3) | 实测值Wi,meas/(J·m–3) | 相对误差σ/% | |||
| 1.5 | 271.95 | 278.14 | 2.96 | |||
| 1.4 | 219.64 | 229.47 | 4.28 | |||
| 1.2 | 153.68 | 153.68 | 1.31 | |||
| 1.0 | 116.04 | 107.23 | 4.41 | |||
| 0.8 | 74.00 | 73.99 | 0.01 | |||
| 0.6 | 46.62 | 46.67 | 0.08 | |||
| 0.4 | 23.34 | 24.20 | 3.52 | |||
| 0.2 | 6.38 | 6.54 | 2.30 | 
| 磁密幅值Bm/T | 计算值Wi,calc/(J·m–3) | 实测值Wi,meas/(J·m–3) | 相对误差σ/% | |||
| 1.8 | 138.46 | 150.25 | 7.84 | |||
| 1.7 | 86.75 | 98.18 | 11.88 | |||
| 1.5 | 47.87 | 55.42 | 13.62 | |||
| 1.3 | 37.51 | 34.91 | 10.78 | |||
| 1.1 | 26.63 | 26.38 | 0.95 | |||
| 0.9 | 16.46 | 17.32 | 4.96 | |||
| 0.7 | 10.58 | 10.31 | 2.66 | |||
| 0.5 | 5.35 | 4.94 | 8.41 | |||
| 0.3 | 2.29 | 1.87 | 18.33 | 
Table 6 Simulated and measured values of static hysteresis loss in samples of oriented silicon steel wafers simulated based on simplified LLG equations
| 磁密幅值Bm/T | 计算值Wi,calc/(J·m–3) | 实测值Wi,meas/(J·m–3) | 相对误差σ/% | |||
| 1.8 | 138.46 | 150.25 | 7.84 | |||
| 1.7 | 86.75 | 98.18 | 11.88 | |||
| 1.5 | 47.87 | 55.42 | 13.62 | |||
| 1.3 | 37.51 | 34.91 | 10.78 | |||
| 1.1 | 26.63 | 26.38 | 0.95 | |||
| 0.9 | 16.46 | 17.32 | 4.96 | |||
| 0.7 | 10.58 | 10.31 | 2.66 | |||
| 0.5 | 5.35 | 4.94 | 8.41 | |||
| 0.3 | 2.29 | 1.87 | 18.33 | 
| 模型 | 平均相对误差/% | |
| LLG方程 | 2.36 | |
| Preisach模型 | 8.44 | |
| J-A模型 | 9.57 | 
Table 7 Mean relative errors of non-oriented silicon steel sample based on Preisach model, J-A model and simplified LLG equation
| 模型 | 平均相对误差/% | |
| LLG方程 | 2.36 | |
| Preisach模型 | 8.44 | |
| J-A模型 | 9.57 | 
| 模型 | 平均相对误差/% | |
| LLG方程 | 8.82 | |
| Preisach模型 | 12.51 | |
| J-A模型 | 14.65 | 
Table 8 Mean relative errors of oriented silicon steel sample based on Preisach model, J-A model and simplified LLG equation
| 模型 | 平均相对误差/% | |
| LLG方程 | 8.82 | |
| Preisach模型 | 12.51 | |
| J-A模型 | 14.65 | 
| 1 | 赵小军, 张佳伟, 王浩名, 等. 电-磁-机耦合视域下考虑气隙影响的变压器铁心振动特性精细化模拟方法[J]. 电工技术学报, 2024, 39 (14): 4257- 4269. | 
| ZHAO Xiaojun, ZHANG Jiawei, WANG Haoming, et al. A refined simulation method for the vibration characteristics of transformer core considering the influence of air gap under the perspective of electro-magnetic-mechanical coupling[J]. Transactions of China Electrotechnical Society, 2024, 39 (14): 4257- 4269. | |
| 2 |  
											李伊玲, 李琳, 刘任. 机械应力作用下电工钢片静态磁滞特性模拟方法研究[J]. 中国电力, 2020, 53 (10): 10- 18. 
																							 DOI  | 
										
|  
											LI Yiling, LI Lin, LIU Ren. Modeling methods of static hysteresis characteristics of electrical steel sheets under stress[J]. Electric Power, 2020, 53 (10): 10- 18. 
																							 DOI  | 
										|
| 3 | 王振, 张艳丽, 龚园, 等. 机械应力下无取向电工钢片磁致伸缩特性研究[J]. 电工技术学报, 2023, 38 (21): 5682- 5690. | 
| WANG Zhen, ZHANG Yanli, GONG Yuan, et al. Study on magnetostrictive properties of non-oriented electrical steel sheet under mechanical stress[J]. Transactions of China Electrotechnical Society, 2023, 38 (21): 5682- 5690. | |
| 4 | 罗智荣, 黄丰, 郭淳, 等. 基于多物理场仿真的油浸式变压器振动特性分析及影响因素研究[J]. 智慧电力, 2024, 52 (11): 48- 55. | 
| LUO Zhirong, HUANG Feng, GUO Chun, et al. Vibration characteristics analysis and influencing factors of oilimmersed transformer based on multi-physical field simulation[J]. Smart Power, 2024, 52 (11): 48- 55. | |
| 5 | 李峰, 孟圣坤, 陆飞, 等. 基于监督学习的直流偏磁特征分析及评价方法研究[J]. 智慧电力, 2023, 51 (8): 111- 118. | 
| LI Feng, MENG Shengkun, LU Fei, et al. Characteristic analysis and evaluation method of DC magnetic bias based on supervised learning[J]. Smart Power, 2023, 51 (8): 111- 118. | |
| 6 | 赵小军, 武欣怡, 章轩源, 等. 高频多谐波激励下计及趋肤效应的软磁带材磁滞及损耗特性预测[J]. 中国电机工程学报, 2024, 44 (22): 9039- 9048. | 
| ZHAO Xiaojun, WU Xinyi, ZHANG Xuanyuan, et al. Predicting hysteresis and loss characteristics of soft magnetic tape material considering skin effect under high frequency multi-harmonic magnetization[J]. Proceedings of the CSEE, 2024, 44 (22): 9039- 9048. | |
| 7 | 刘欢, 李永建, 张长庚, 等. 非正弦激励下纳米晶材料高频磁心损耗的计算方法改进与验证[J]. 电工技术学报, 2023, 38 (5): 1217- 1227. | 
| LIU Huan, LI Yongjian, ZHANG Changgeng, et al. Calculation and experimental verification of core loss in high frequency transformer under non-sinusoidal excitation[J]. Transactions of China Electrotechnical Society, 2023, 38 (5): 1217- 1227. | |
| 8 | 赵志刚, 毕紫莉. 正弦及谐波激励下铁磁材料损耗模型的改进和验证[J]. 中国电机工程学报, 2022, 42 (9): 3452- 3460. | 
| ZHAO Zhigang, BI Zili. Improvement and verification of ferromagnetic material loss model under sinusoidal and harmonic excitation[J]. Proceedings of the CSEE, 2022, 42 (9): 3452- 3460. | |
| 9 |  
											SAI RAM B, PAUL A K, KULKARNI S V. Soft magnetic materials and their applications in transformers[J]. Journal of Magnetism and Magnetic Materials, 2021, 537, 168210. 
																							 DOI  | 
										
| 10 | 刘洋, 巩学海, 陈新, 等. 0.10 mm与0.23 mm取向硅钢在不同运行工况下磁特性的测量与对比分析[J]. 中国电力, 2022, 55 (2): 181- 189. | 
| LIU Yang, GONG Xuehai, CHEN Xin, et al. Measurement and comparison of magnetic properties of 0.10 mm and 0.23 mm oriented silicon steel under different operating conditions[J]. Electric Power, 2022, 55 (2): 181- 189. | |
| 11 | 贲彤, 安妮, 陈龙, 等. 基于改进多尺度动态J-A模型的无取向硅钢磁致伸缩特性模拟[J]. 中国电机工程学报, 2025, 45 (11): 4514- 4526. | 
| BEN Tong, AN Ni, CHEN Long, et al. Simulation of magnetostrictive characteristics of non-oriented silicon steel based on improved multi-scale dynamic J-A model[J]. Proceedings of the CSEE, 2025, 45 (11): 4514- 4526. | |
| 12 |  
											李宜伦, 张异殊, 宋光. 基于改进鲸鱼算法的电流互感器J-A模型磁滞参数识别[J]. 中国电力, 2022, 55 (2): 190- 199. 
																							 DOI  | 
										
|  
											LI Yilun, ZHANG Yishu, SONG Guang. Hysteresis parameter identification of J-A model current transformer based on improved whale algorithm[J]. Electric Power, 2022, 55 (2): 190- 199. 
																							 DOI  | 
										|
| 13 | 刘任, 杜莹雪, 李琳, 等. 解析正Preisach磁滞模型的推导与修正[J]. 中国电机工程学报, 2023, 43 (5): 2070- 2079. | 
| LIU Ren, DU Yingxue, LI Lin, et al. Derivation and modification of analytical forward preisach hysteresis model[J]. Proceedings of the CSEE, 2023, 43 (5): 2070- 2079. | |
| 14 |  
											胡蔡飞, 范学良, 童力, 等. 基于Jiles-Atherton逆模型的磁阀式可控电抗器铁心饱和度分析[J]. 中国电力, 2021, 54 (12): 38- 44. 
																							 DOI  | 
										
|  
											HU Caifei, FAN Xueliang, TONG Li, et al. Core saturation analysis of magnetic-valve controlled reactor based on Jiles-Atherton inverse model[J]. Electric Power, 2021, 54 (12): 38- 44. 
																							 DOI  | 
										|
| 15 |  
											HAYASHI N, INOUE T, NAKATANI Y, et al. Direct solution of Landau-Lifshitz-Gilbert equation for domain walls in thin Permalloy films[J]. IEEE Transactions on Magnetics, 1988, 24 (6): 3111- 3113. 
																							 DOI  | 
										
| 16 |  
											DI FRATTA G, JÜNGEL A, PRAETORIUS D, et al. Spin-diffusion model for micromagnetics in the limit of long times[J]. Journal of Differential Equations, 2023, 343, 467- 494. 
																							 DOI  | 
										
| 17 |  
											BERTOTTI G. Connection between microstructure and magnetic properties of soft magnetic materials[J]. Journal of Magnetism and Magnetic Materials, 2008, 320 (20): 2436- 2442. 
																							 DOI  | 
										
| 18 | ANGIZI S, HE Z Z, CHEN A, et al. Hybrid spin-CMOS polymorphic logic gate with application in in-memory computing[J]. IEEE Transactions on Magnetics, 2020, 56 (2): 3400215. | 
| 19 | 袁佳卉, 杨晓阔, 张斌, 等. 混合时钟驱动的自旋神经元器件激活特性和计算性能[J]. 物理学报, 2021, 70 (20): 317- 326. | 
| YUAN Jiahui, YANG Xiaokuo, ZHANG Bin, et al. Activation function and computing performance of spin neuron driven by magnetic field and strain[J]. Acta Physica Sinica, 2021, 70 (20): 317- 326. | |
| 20 | VAN DE WIELE B, DUPRÉ L, OLYSLAGER F. Influence of space discretization size in 3D micromagnetic modeling[J]. Physica B: Condensed Matter, 2008, 403 (2/3): 372- 375. | 
| 21 |  
											STEPHENSON E, MARDER A. The effects of grain size on the core loss and permeability of motor lamination steel[J]. IEEE Transactions on Magnetics, 1986, 22 (2): 101- 106. 
																							 DOI  | 
										
| 22 |  
											CHENG L, WAGNER G J. A representative volume element network (RVE-net) for accelerating RVE analysis, microscale material identification, and defect characterization[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 390, 114507. 
																							 DOI  | 
										
| 23 |  
											KURZKE M, MELCHER C, MOSER R. Vortex motion for the landau–Lifshitz–gilbert equation with spin-transfer torque[J]. SIAM Journal on Mathematical Analysis, 2011, 43 (3): 1099- 1121. 
																							 DOI  | 
										
| 24 |  
											LAKSHMANAN M. The fascinating world of the landau–Lifshitz–gilbert equation: an overview[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369 (1939): 1280- 1300. 
																							 DOI  | 
										
| 25 |  
											PAN H J, ZHANG Z H, XIE J X. The effects of recrystallization texture and grain size on magnetic properties of 6.5wt% Si electrical steel[J]. Journal of Magnetism and Magnetic Materials, 2016, 401, 625- 632. 
																							 DOI  | 
										
| 26 |  
											LEBECKI K M, DONAHUE M J, GUTOWSKI M W. Periodic boundary conditions for demagnetization interactions in micromagnetic simulations[J]. Journal of Physics D: Applied Physics, 2008, 41 (17): 175005. 
																							 DOI  | 
										
| 27 | 刘任, 顾朝阳, 孙江东, 等. Jiles-Atherton磁滞模型的改进与非正弦激励下软磁材料复杂磁滞准确模拟[J]. 中国电机工程学报, 2025, 45 (5): 2016- 2027. | 
| LIU Ren, GU Chaoyang, SUN Jiangdong, et al. Modified Jiles-Atherton hysteresis model and accurate simulation of complex hysteresis characteristics of soft magnetic materials under non-sinusoidal excitation[J]. Proceedings of the CSEE, 2025, 45 (5): 2016- 2027. | |
| 28 | 刘任, 杜莹雪, 李琳, 等. 解析逆Preisach磁滞模型[J]. 电工技术学报, 2023, 38 (10): 2567- 2576. | 
| LIU Ren, DU Yingxue, LI Lin, et al. Analytical inverse Preisach hysteresis model[J]. Transactions of China Electrotechnical Society, 2023, 38 (10): 2567- 2576. | 
| [1] | LI Yiling, LI Lin, LIU Ren. Modeling Methods of Static Hysteresis Characteristics of Electrical Steel Sheets under Stress [J]. Electric Power, 2020, 53(10): 10-18. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
