Electric Power ›› 2025, Vol. 58 ›› Issue (5): 21-32.DOI: 10.11930/j.issn.1004-9649.202411101
• Artificial Intelligence and New Energy Technologies for New Power Distribution Systems • Previous Articles Next Articles
					
													GUI Qianjin1(
), XU Wenfa1(
), LI Xiaoyang1(
), LUO Lirong1, YE Haifeng2, WANG Zhengfeng2
												  
						
						
						
					
				
Received:2024-11-28
															
							
															
							
															
							
																	Online:2025-05-30
															
							
							
																	Published:2025-05-28
															
							
						Supported by:GUI Qianjin, XU Wenfa, LI Xiaoyang, LUO Lirong, YE Haifeng, WANG Zhengfeng. Ultra-Short-Term Photovoltaic Power Interval Forecasting Based on Time-Series Decomposition and Conformal Quantile Regression[J]. Electric Power, 2025, 58(5): 21-32.
| 测试集 | 指标 | 模型 | ||||||||||||||
| NP | NP_Season | GRU | TimesNet | NHITS | Informer | |||||||||||
| 测 试 集 一  | 春 | MAE | 0.203 | 0.127 | 0.258 | 0.579 | 0.330 | 0.508 | ||||||||
| RMSE | 0.426 | 0.373 | 0.518 | 0.896 | 0.579 | 0.863 | ||||||||||
| 夏 | MAE | 0.193 | 0.218 | 0.287 | 0.517 | 0.307 | 0.457 | |||||||||
| RMSE | 0.510 | 0.516 | 0.558 | 0.844 | 0.570 | 0.798 | ||||||||||
| 秋 | MAE | 0.191 | 0.180 | 0.257 | 0.474 | 0.282 | 0.434 | |||||||||
| RMSE | 0.494 | 0.495 | 0.530 | 0.756 | 0.545 | 0.722 | ||||||||||
| 冬 | MAE | 0.238 | 0.201 | 0.240 | 0.415 | 0.247 | 0.383 | |||||||||
| RMSE | 0.494 | 0.487 | 0.484 | 0.660 | 0.473 | 0.628 | ||||||||||
| 平均 | MAE | 0.206 | 0.182 | 0.261 | 0.496 | 0.292 | 0.446 | |||||||||
| RMSE | 0.481 | 0.468 | 0.523 | 0.789 | 0.542 | 0.753 | ||||||||||
| 测试 集二  | MAE | 0.187 | 0.172 | 0.262 | 0.668 | 0.436 | 0.730 | |||||||||
| RMSE | 0.499 | 0.493 | 0.511 | 0.933 | 0.682 | 1.104 | ||||||||||
Table 1 Performance of different algorithms in MAE and RMSE metrics for photovoltaic forecast data in four test sets
| 测试集 | 指标 | 模型 | ||||||||||||||
| NP | NP_Season | GRU | TimesNet | NHITS | Informer | |||||||||||
| 测 试 集 一  | 春 | MAE | 0.203 | 0.127 | 0.258 | 0.579 | 0.330 | 0.508 | ||||||||
| RMSE | 0.426 | 0.373 | 0.518 | 0.896 | 0.579 | 0.863 | ||||||||||
| 夏 | MAE | 0.193 | 0.218 | 0.287 | 0.517 | 0.307 | 0.457 | |||||||||
| RMSE | 0.510 | 0.516 | 0.558 | 0.844 | 0.570 | 0.798 | ||||||||||
| 秋 | MAE | 0.191 | 0.180 | 0.257 | 0.474 | 0.282 | 0.434 | |||||||||
| RMSE | 0.494 | 0.495 | 0.530 | 0.756 | 0.545 | 0.722 | ||||||||||
| 冬 | MAE | 0.238 | 0.201 | 0.240 | 0.415 | 0.247 | 0.383 | |||||||||
| RMSE | 0.494 | 0.487 | 0.484 | 0.660 | 0.473 | 0.628 | ||||||||||
| 平均 | MAE | 0.206 | 0.182 | 0.261 | 0.496 | 0.292 | 0.446 | |||||||||
| RMSE | 0.481 | 0.468 | 0.523 | 0.789 | 0.542 | 0.753 | ||||||||||
| 测试 集二  | MAE | 0.187 | 0.172 | 0.262 | 0.668 | 0.436 | 0.730 | |||||||||
| RMSE | 0.499 | 0.493 | 0.511 | 0.933 | 0.682 | 1.104 | ||||||||||
| 测试集 | 方法 | 置信水平 | ||||||||||||||||||||||||||
| 95% | 90% | 85% | ||||||||||||||||||||||||||
| PICP | PINAW | NIW | CWC | PICP | PINAW | NIW | CWC | PICP | PINAW | NIW | CWC | |||||||||||||||||
| 测 试 集 一  | 春 | QR | 0.882 | 0.087 | 0.885 | 2.692 | 0.831 | 0.041 | 0.448 | 1.346 | 0.768 | 0.034 | 0.392 | 2.056 | ||||||||||||||
| CQR | 0.942 | 0.086 | 0.823 | 0.215 | 0.874 | 0.039 | 0.402 | 0.182 | 0.814 | 0.030 | 0.332 | 0.212 | ||||||||||||||||
| 夏 | QR | 0.889 | 0.101 | 1.156 | 2.236 | 0.856 | 0.065 | 0.775 | 0.654 | 0.842 | 0.053 | 0.639 | 0.132 | |||||||||||||||
| CQR | 0.961 | 0.102 | 1.074 | 0.102 | 0.886 | 0.067 | 0.773 | 0.203 | 0.834 | 0.044 | 0.537 | 0.142 | ||||||||||||||||
| 秋 | QR | 0.918 | 0.111 | 1.016 | 0.658 | 0.811 | 0.061 | 0.635 | 5.285 | 0.870 | 0.081 | 0.783 | 0.081 | |||||||||||||||
| CQR | 0.923 | 0.122 | 1.112 | 0.590 | 0.843 | 0.066 | 0.657 | 1.200 | 0.855 | 0.080 | 0.793 | 0.080 | ||||||||||||||||
| 冬 | QR | 0.874 | 0.094 | 0.959 | 4.289 | 0.853 | 0.065 | 0.678 | 0.744 | 0.803 | 0.075 | 0.836 | 0.863 | |||||||||||||||
| CQR | 0.894 | 0.087 | 0.869 | 1.518 | 0.887 | 0.056 | 0.566 | 0.164 | 0.795 | 0.058 | 0.654 | 0.969 | ||||||||||||||||
| 平均 | QR | 0.891 | 0.098 | 1.004 | 2.469 | 0.838 | 0.058 | 0.634 | 2.007 | 0.821 | 0.061 | 0.662 | 0.783 | |||||||||||||||
| CQR | 0.930 | 0.099 | 0.969 | 0.606 | 0.873 | 0.057 | 0.599 | 0.437 | 0.825 | 0.053 | 0.579 | 0.351 | ||||||||||||||||
| 测试集二 | QR | 0.971 | 0.254 | 0.261 | 0.254 | 0.845 | 0.082 | 0.098 | 0.185 | 0.802 | 0.125 | 0.156 | 1.513 | |||||||||||||||
| CQR | 0.954 | 0.120 | 0.126 | 0.120 | 0.926 | 0.089 | 0.096 | 0.089 | 0.855 | 0.147 | 0.172 | 0.147 | ||||||||||||||||
Table 2 Performance of QR and CQR in PICP, PINAW, NIW and CWC metrics
| 测试集 | 方法 | 置信水平 | ||||||||||||||||||||||||||
| 95% | 90% | 85% | ||||||||||||||||||||||||||
| PICP | PINAW | NIW | CWC | PICP | PINAW | NIW | CWC | PICP | PINAW | NIW | CWC | |||||||||||||||||
| 测 试 集 一  | 春 | QR | 0.882 | 0.087 | 0.885 | 2.692 | 0.831 | 0.041 | 0.448 | 1.346 | 0.768 | 0.034 | 0.392 | 2.056 | ||||||||||||||
| CQR | 0.942 | 0.086 | 0.823 | 0.215 | 0.874 | 0.039 | 0.402 | 0.182 | 0.814 | 0.030 | 0.332 | 0.212 | ||||||||||||||||
| 夏 | QR | 0.889 | 0.101 | 1.156 | 2.236 | 0.856 | 0.065 | 0.775 | 0.654 | 0.842 | 0.053 | 0.639 | 0.132 | |||||||||||||||
| CQR | 0.961 | 0.102 | 1.074 | 0.102 | 0.886 | 0.067 | 0.773 | 0.203 | 0.834 | 0.044 | 0.537 | 0.142 | ||||||||||||||||
| 秋 | QR | 0.918 | 0.111 | 1.016 | 0.658 | 0.811 | 0.061 | 0.635 | 5.285 | 0.870 | 0.081 | 0.783 | 0.081 | |||||||||||||||
| CQR | 0.923 | 0.122 | 1.112 | 0.590 | 0.843 | 0.066 | 0.657 | 1.200 | 0.855 | 0.080 | 0.793 | 0.080 | ||||||||||||||||
| 冬 | QR | 0.874 | 0.094 | 0.959 | 4.289 | 0.853 | 0.065 | 0.678 | 0.744 | 0.803 | 0.075 | 0.836 | 0.863 | |||||||||||||||
| CQR | 0.894 | 0.087 | 0.869 | 1.518 | 0.887 | 0.056 | 0.566 | 0.164 | 0.795 | 0.058 | 0.654 | 0.969 | ||||||||||||||||
| 平均 | QR | 0.891 | 0.098 | 1.004 | 2.469 | 0.838 | 0.058 | 0.634 | 2.007 | 0.821 | 0.061 | 0.662 | 0.783 | |||||||||||||||
| CQR | 0.930 | 0.099 | 0.969 | 0.606 | 0.873 | 0.057 | 0.599 | 0.437 | 0.825 | 0.053 | 0.579 | 0.351 | ||||||||||||||||
| 测试集二 | QR | 0.971 | 0.254 | 0.261 | 0.254 | 0.845 | 0.082 | 0.098 | 0.185 | 0.802 | 0.125 | 0.156 | 1.513 | |||||||||||||||
| CQR | 0.954 | 0.120 | 0.126 | 0.120 | 0.926 | 0.089 | 0.096 | 0.089 | 0.855 | 0.147 | 0.172 | 0.147 | ||||||||||||||||
| 1 | 原希尧, 王关涛, 朱若源, 等. 碳-绿色证书交易机制下考虑回收P2G余热和需求响应的PIES优化调度[J]. 电力建设, 2023, 44 (3): 25- 35. | 
| YUAN Xiyao, WANG Guantao, ZHU Ruoyuan, et al. Optimal scheduling of park integrated energy system with P2G waste heat recovery and demand response under carbon-green certificate trading mechanism[J]. Electric Power Construction, 2023, 44 (3): 25- 35. | |
| 2 | 王海军, 居蓉蓉, 董颖华. 基于时空关联特征与B-LSTM模型的分布式光伏功率区间预测[J]. 中国电力, 2024, 57 (7): 74- 80. | 
| WANG Haijun, JU Rongrong, DONG Yinghua. Distributed photovoltaic power interval prediction based on spatio-temporal correlation feature and B-LSTM model[J]. Electric Power, 2024, 57 (7): 74- 80. | |
| 3 | 王瑞, 高强, 逯静. 基于CEEMDAN-LSSVM-ARIMA模型的短期光伏功率预测[J]. 传感器与微系统, 2022, 41 (5): 118- 122. | 
| WANG Rui, GAO Qiang, LU Jing. Short-term photovoltaic power prediction based on CEEMDAN-LSSVM-ARIMA model[J]. Transducer and Microsystem Technologies, 2022, 41 (5): 118- 122. | |
| 4 |  
											PAN M Z, LI C, GAO R, et al. Photovoltaic power forecasting based on a support vector machine with improved ant colony optimization[J]. Journal of Cleaner Production, 2020, 277, 123948. 
																							 DOI  | 
										
| 5 | 王伟亮, 刘会巧, 张天宇, 等. 基于多任务集成学习的储能电池剩余使用寿命预测[J]. 电力建设, 2024, 45 (11): 25- 33. | 
| WANG Weiliang, LIU Huiqiao, ZHANG Tianyu, et al. Multi-task ensemble learning-based prediction of remaining useful life of energy-storage batteries[J]. Electric Power Construction, 2024, 45 (11): 25- 33. | |
| 6 | 王开艳, 杜浩东, 贾嵘, 等. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 2022, 48 (11): 4372- 4388. | 
| WANG Kaiyan, DU Haodong, JIA Rong, et al. Short-term interval probability prediction of photovoltaic power based on similar daily clustering and QR-CNN-BiLSTM model[J]. High Voltage Engineering, 2022, 48 (11): 4372- 4388. | |
| 7 | 滕陈源, 丁逸超, 张有兵, 等. 基于VMD-Informer-BiLSTM模型的超短期光伏功率预测[J]. 高电压技术, 2023, 49 (7): 2961- 2971. | 
| TENG Chenyuan, DING Yichao, ZHANG Youbing, et al. Ultra-short-term photovoltaic power prediction based on VMD-informer-BiLSTM model[J]. High Voltage Engineering, 2023, 49 (7): 2961- 2971. | |
| 8 | 张冬冬, 单琳珂, 刘天皓. 人工智能技术在风力与光伏发电数据挖掘及功率预测中的应用综述[J]. 综合智慧能源, 2025, 47 (3): 32- 46. | 
| ZHANG Dongdong, SHAN Linke, LIU Tianhao. Review on the application of artificial intelligence in data mining and wind and photovoltaic power forecasting[J]. Integrated Intelligent Energy, 2025, 47 (3): 32- 46. | |
| 9 | 任密蜂, 王家辉, 叶泽甫, 等. 一种适用于单/多光伏电站的迁移超短期光伏预测建模框架[J]. 太阳能学报, 2024, 45 (6): 359- 367. | 
| REN Mifeng, WANG Jiahui, YE Zefu, et al. Transfer ultra-short term photovoltaic prediction modeling framework for single/multiple photovoltaic power stations[J]. Acta Energiae Solaris Sinica, 2024, 45 (6): 359- 367. | |
| 10 |  
											林帆, 张耀, 东琦, 等. 基于分位数插值和深度自回归网络的光伏出力概率预测[J]. 电力系统自动化, 2023, 47 (9): 79- 87. 
																							 DOI  | 
										
|  
											LIN Fan, ZHANG Yao, DONG Qi, et al. Probability prediction of photovoltaic output based on quantile interpolation and deep autoregressive network[J]. Automation of Electric Power Systems, 2023, 47 (9): 79- 87. 
																							 DOI  | 
										|
| 11 | 张娜, 葛磊蛟. 基于SOA优化的光伏短期出力区间组合预测[J]. 太阳能学报, 2021, 42 (5): 252- 259. | 
| ZHANG Na, GE Leijiao. Photovoltaic system short-term power interval hybrid forecasting method based on seeker optimization algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42 (5): 252- 259. | |
| 12 | 梅飞, 顾佳琪, 裴鑫, 等. 基于自适应滚动匹配预测修正模式的光伏区间预测[J]. 电力自动化设备, 2022, 42 (2): 92- 98. | 
| MEI Fei, GU Jiaqi, PEI Xin, et al. Photovoltaic interval prediction based on adaptive rolling matching prediction correction mode[J]. Electric Power Automation Equipment, 2022, 42 (2): 92- 98. | |
| 13 |  
											YU M, NIU D X, WANG K K, et al. Short-term photovoltaic power point-interval forecasting based on double-layer decomposition and WOA-BiLSTM-Attention and considering weather classification[J]. Energy, 2023, 275, 127348. 
																							 DOI  | 
										
| 14 | 杨国清, 李建基, 王德意, 等. 基于信息熵变权区间组合和边界逼近的短期光伏功率区间预测[J]. 太阳能学报, 2023, 44 (2): 381- 390. | 
| YANG Guoqing, LI Jianji, WANG Deyi, et al. Short-term photovoltaic power interval prediction based on information entropy variable weight interval combination and boundary approximation[J]. Acta Energiae Solaris Sinica, 2023, 44 (2): 381- 390. | |
| 15 |  
											吴振威, 蒋小平, 马会萌, 等. 多时间尺度的光伏出力波动特性研究[J]. 现代电力, 2014, 31 (1): 58- 61. 
																							 DOI  | 
										
|  
											WU Zhenwei, JIANG Xiaoping, MA Huimeng, et al. Study on fluctuations characteristics of photovoltaic power output in different time scales[J]. Modern Electric Power, 2014, 31 (1): 58- 61. 
																							 DOI  | 
										|
| 16 | 张东宁. 基于改进电导增量法的光伏最大功率点跟踪策略研究[J]. 太阳能学报, 2022, 43 (8): 82- 90. | 
| ZHANG Dongning. Research on photovoltaic maximum power point tracking strategy based on improved conductance increment method[J]. Acta Energiae Solaris Sinica, 2022, 43 (8): 82- 90. | |
| 17 |  
											KOENKER R, HALLOCK K F. Quantile regression[J]. Journal of Economic Perspectives, 2001, 15 (4): 143- 156. 
																							 DOI  | 
										
| 18 | BARBER R F, CANDÈS E J, RAMDAS A, et al. Conformal prediction beyond exchangeability[J]. The Annals of Statistics, 2023, 51 (2): 816- 845. | 
| 19 |  
											OLSSON H, KARTASALO K, MULLIQI N, et al. Estimating diagnostic uncertainty in artificial intelligence assisted pathology using conformal prediction[J]. Nature Communications, 2022, 13 (1): 7761. 
																							 DOI  | 
										
| 20 |  
											HU J M, LUO Q X, TANG J W, et al. Conformalized temporal convolutional quantile regression networks for wind power interval forecasting[J]. Energy, 2022, 248, 123497. 
																							 DOI  | 
										
| 21 |  
											KATH C, ZIEL F. Conformal prediction interval estimation and applications to day-ahead and intraday power markets[J]. International Journal of Forecasting, 2021, 37 (2): 777- 799. 
																							 DOI  | 
										
| 22 | 苏子越, 柴琳, 谢亮, 等. 基于变分模态分解的综合能源系统短期电负荷预测[J]. 热力发电, 2024, 53 (12): 21- 28. | 
| SU Ziyue, CHAI Lin, XIE Liang, et al. Short-term electrical load forecasting for integrated energy system based on variational mode decomposition[J]. Thermal Power Generation, 2024, 53 (12): 21- 28. | |
| 23 | TRIEBE O, HEWAMALAGE H, PILYUGINA P, et al. NeuralProphet: explainable forecasting at scale[EB/OL]. (2021-11-29) [2024-5-12]. https://arxiv.org/abs/2111.15397v1. | 
| 24 |  
											俞胜, 黄福兴, 冯艳丽, 等. 新型电力AMI系统中基于Neural Prophet模型的电力负荷预测与修补研究[J]. 智慧电力, 2023, 51 (5): 44- 50. 
																							 DOI  | 
										
|  
											YU Sheng, HUANG Fuxing, FENG Yanli, et al. Neural prophet-based power load forecasting and repair in novel power AMI system[J]. Smart Power, 2023, 51 (5): 44- 50. 
																							 DOI  | 
										|
| 25 | TRIEBE O, LAPTEV N, RAJAGOPAL R. AR-Net: a simple auto-regressive neural network for time-series[EB/OL]. (2019-11-27) [2024-6-29]. https://arxiv.org/abs/1911.12436v1. | 
| 26 | FONTANA M, ZENI G, VANTINI S. Conformal prediction: a unified review of theory and new challenges[J]. Bernoulli, 2023, 29 (1): 1- 23. | 
| 27 | 雷雯雯. 草图算法在共形预测中的应用[D]. 桂林: 桂林电子科技大学, 2023. | 
| LEI Wenwen. Application of sketching algorithm in conformal prediction[D]. Guilin: Guilin University of Electronic Technology, 2023. | |
| 28 | Desert Knowledge Australia Centre. Download Data. Alice Springs[EB/OL]. (2023-10-6) [2024-05-13]. http://dkasolarcentre.com.au/download. | 
| 29 | 侯健敏, 孟莹, 李志, 等. 基于综合相关性指标与SA-BiGRU的综合能源系统多元负荷预测[J]. 电力建设, 2024, 45 (5): 118- 130. | 
| HOU Jianmin, MENG Ying, LI Zhi, et al. Multi-energy load forecasting in integrated energy systems based on comprehensive correlation index and SA-BiGRU network[J]. Electric Power Construction, 2024, 45 (5): 118- 130. | |
| 30 | WU H X, HU T G, LIU Y, et al. TimesNet: temporal 2D-variation modeling for general time series analysis[EB/OL]. (2022-10-5) [2024-8-6]. https://arxiv.org/abs/2210.02186v3. | 
| 31 |  
											CHALLU C, OLIVARES K G, ORESHKIN B N, et al. NHITS: neural hierarchical interpolation for time series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37 (6): 6989- 6997. 
																							 DOI  | 
										
| 32 |  
											ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (12): 11106- 11115. 
																							 DOI  | 
										
| [1] | Manlin HU, Nan LI, Yiming LI, Zhiyong PI, Yi ZHU, Zhenxing LI. Fault Location Method for Distribution Network with Photovoltaic Power Based on Negative Sequence Component [J]. Electric Power, 2024, 57(5): 188-199. | 
| [2] | Zhongfei CHEN, Yue ZHAO, Qiuna CAI, Qiaoyu ZHANG, Zelin WANG, Xiaojuan DAI, Yuguo CHEN. Adequacy Evaluation of Power System Ramping Capability Based on Net Load Forecast Error Statistics [J]. Electric Power, 2024, 57(5): 50-60. | 
| [3] | Xiangjing SU, Haibo YU, Yang FU, Shuxin TIAN, Haiyu LI, Fuhai GENG. Probabilistic Forecasting of Offshore Wind Power Based on Dual-stage Attentional LSTM and Joint Quantile Loss Function [J]. Electric Power, 2023, 56(11): 10-19. | 
| [4] | Qian ZHANG, Fei MENG, Tao LI, Yong YANG, Lu BAI. Informer Photovoltaic Power Generation Forecasting Based on Cycle Information Enhancement [J]. Electric Power, 2023, 56(10): 186-193. | 
| [5] | HAN Ziyan, WANG Shouxiang, ZHAO Qianyu, ZHENG Zhijie. A Capacity Optimization Configuration Method for Photovoltaic and Energy Storage System of 5 G Base Station Considering Time-of-Use Electricity Price [J]. Electric Power, 2022, 55(9): 8-15. | 
| [6] | SHA Jun, XU Yusen, LIU Chongchong, FENG Dingdong, XU Zheng, ZANG Haixiang. Short-Term Wind Power Prediction Based on Variational Modal Decomposition and Quantile Convolution-Recurrent Neural Network [J]. Electric Power, 2022, 55(12): 61-68. | 
| [7] | LI Fengjun, WANG Lei, ZHAO Jian, ZHANG Jianbin, ZHANG Shiyao, TIAN Yangyang. Research on Distributed Photovoltaic Short-Term Power Prediction Method Based on Weather Fusion and LSTM-Net [J]. Electric Power, 2022, 55(11): 149-154. | 
| [8] | CHEN Wei, REN Jing, WU Xinfang, YU Wenying, LIU Yongsheng. Iterative Optimization and Economic Analysis of Photovoltaic Power Generation Forecasting under Haze Conditions [J]. Electric Power, 2021, 54(10): 223-230. | 
| [9] | CAI Guowei, BIAN Yudong, KONG Lingguo, SONG Jia, XU He. Zero-Error Frequency Regulation Control Method for Microgrids Based on Consensus Algorithm [J]. Electric Power, 2020, 53(10): 59-65. | 
| [10] | LI Xiang, ZHANG Jiancheng, WANG Ning. Capacity Configuration Strategy for Super Capacitor-Flywheel-Battery Hybrid Energy Storage System [J]. Electric Power, 2018, 51(11): 117-124. | 
| [11] | CHENG Qiming, CHEN Gen, CHENG Yinman, BAI Yuanfei, LI Ming. The Simulative Research on Energy Management Strategy for Microgrid Structure [J]. Electric Power, 2016, 49(7): 128-134. | 
| [12] | YANG Xiyun, REN Jie, XIAO Yunqi. A Combined Photovoltaic Output Forecasting Method Based on Rough Set Theory [J]. Electric Power, 2016, 49(12): 133-138. | 
| [13] | CHENG Meng, ZHAO Shuangzhi, WU Lijie, HU Chuansheng, XU Hui. A Comprehensive Evaluation Method for Urban Photovoltaic Power Generation Project Based on AHP-TOPSIS [J]. Electric Power, 2016, 49(10): 171-175. | 
| [14] | LIANG Shi-chun, ZHANG Xiao-dong, LIN Pei-feng, NIU Meng. A Power Prediction Model of PV System With Hybrid Energy Storage [J]. Electric Power, 2014, 47(3): 24-27. | 
| [15] | CUI Yang, CHEN Zhen-hong, CHEN Chi, TANG Jun, GU Chun. Upgrade of the PV Power Prediction System and Implementation of the Key Technologies [J]. Electric Power, 2014, 47(10): 142-147. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||
