Electric Power ›› 2023, Vol. 56 ›› Issue (12): 138-146.DOI: 10.11930/j.issn.1004-9649.202307076
• Key Technologies for Improving the Resilience of Power Systems • Previous Articles Next Articles
Junbo PI1(), Shixiong QI1(
), Wenduo SUN2, Xiansi LOU2, Jiandong WO3, Yue ZHANG4,5(
), Tao JIANG4,5, Lianfei SHAN4,5
Received:
2023-07-19
Accepted:
2023-10-17
Online:
2023-12-23
Published:
2023-12-28
Supported by:
Junbo PI, Shixiong QI, Wenduo SUN, Xiansi LOU, Jiandong WO, Yue ZHANG, Tao JIANG, Lianfei SHAN. Entity and Event Recognition Method for Power Grid Fault Handling Plan Based on UIE Framework[J]. Electric Power, 2023, 56(12): 138-146.
参数 | 设置大小 | 说明 | ||
per_eval_batch_size | 32 | 批处理大小 | ||
learning_rate | 1×10–5 | 最大学习率 | ||
num_train_epochs | 250 | 训练周期 | ||
attention_dropout | 0.1 | attention网络失活比例 | ||
hidden_act | "gelu" | 隐藏层激活函数 | ||
hidden_dropout_prob | 0.1 | 隐藏层dropout比例 | ||
hidden_size | 768 | 隐藏层神经元个数 | ||
initializer_range | 0.02 | 标准偏差 | ||
intermediate_size | 3072 | 中间层神经元个数 | ||
max_position_emb | 2048 | 序列最大长度 | ||
num_attention_heads | 12 | attention头数 | ||
num_hidden_layers | 12 | transformer层数 | ||
pool_act | "tanh" | 池化层激活函数 | ||
vocab_size | 40000 | 词典大小 |
Table 1 UIE framework parameter configuration
参数 | 设置大小 | 说明 | ||
per_eval_batch_size | 32 | 批处理大小 | ||
learning_rate | 1×10–5 | 最大学习率 | ||
num_train_epochs | 250 | 训练周期 | ||
attention_dropout | 0.1 | attention网络失活比例 | ||
hidden_act | "gelu" | 隐藏层激活函数 | ||
hidden_dropout_prob | 0.1 | 隐藏层dropout比例 | ||
hidden_size | 768 | 隐藏层神经元个数 | ||
initializer_range | 0.02 | 标准偏差 | ||
intermediate_size | 3072 | 中间层神经元个数 | ||
max_position_emb | 2048 | 序列最大长度 | ||
num_attention_heads | 12 | attention头数 | ||
num_hidden_layers | 12 | transformer层数 | ||
pool_act | "tanh" | 池化层激活函数 | ||
vocab_size | 40000 | 词典大小 |
序号 | 事件生成模式 | |
1 | act-obj-com-endadv | |
2 | sub-act-obj-com-endadv | |
3 | preadv-sub-act-obj-com-endadv | |
4 | act-preind-ind-ind-endind-com | |
5 | preadv-act-preind-ind-ind-endind-com-endadv | |
6 | sub-act-preind-ind-ind-endind-com-endadv |
Table 2 The event combination mode of fault handling plan
序号 | 事件生成模式 | |
1 | act-obj-com-endadv | |
2 | sub-act-obj-com-endadv | |
3 | preadv-sub-act-obj-com-endadv | |
4 | act-preind-ind-ind-endind-com | |
5 | preadv-act-preind-ind-ind-endind-com-endadv | |
6 | sub-act-preind-ind-ind-endind-com-endadv |
实体类别 | 精确率/% | 召回率/% | F1/% | |||
sub | 98.44 | 98.44 | 98.44 | |||
act | 100.00 | 98.73 | 99.36 | |||
obj | 98.25 | 98.82 | 98.53 | |||
com | 100.00 | 100.00 | 100.00 | |||
preadv | 100.00 | 100.00 | 100.00 | |||
endadv | 94.12 | 100.00 | 96.97 | |||
preind | 92.60 | 92.60 | 92.60 | |||
endind | 97.78 | 100.00 | 98.88 | |||
ind | 97.30 | 95.58 | 96.43 |
Table 3 The recognition effect of various entities based on the UIE framework
实体类别 | 精确率/% | 召回率/% | F1/% | |||
sub | 98.44 | 98.44 | 98.44 | |||
act | 100.00 | 98.73 | 99.36 | |||
obj | 98.25 | 98.82 | 98.53 | |||
com | 100.00 | 100.00 | 100.00 | |||
preadv | 100.00 | 100.00 | 100.00 | |||
endadv | 94.12 | 100.00 | 96.97 | |||
preind | 92.60 | 92.60 | 92.60 | |||
endind | 97.78 | 100.00 | 98.88 | |||
ind | 97.30 | 95.58 | 96.43 |
模型 | 精确率/% | 召回率/% | F1值/% | |||
UIE框架 | 97.61 | 98.24 | 97.91 | |||
BERT+BiLSTM-CRF | 94.69 | 95.22 | 94.93 | |||
word2vec+BiLSTM-CRF | 93.34 | 92.78 | 92.98 |
Table 4 The entity recognition effect of fault handling plan
模型 | 精确率/% | 召回率/% | F1值/% | |||
UIE框架 | 97.61 | 98.24 | 97.91 | |||
BERT+BiLSTM-CRF | 94.69 | 95.22 | 94.93 | |||
word2vec+BiLSTM-CRF | 93.34 | 92.78 | 92.98 |
实体识别 | 内容展示 | |
输入模板 | 模板提示 = ['sub','act','obj','com','preadv','endadv','preind','endind','ind'] | |
输入文本 | "xx省调增加xx机组出力,控制xx双回线潮流不超过10万千瓦。" | |
实体识别结果 | 'sub':[{'text': 'xx省调', 'start': 0, 'end': 4}] 'act':[{'text': '增加', 'start':4, 'end': 6}, {'text': '控制', 'start': 13, 'end': 15,}] 'obj':[{'text': 'xx机组', 'start':6, 'end': 10,}, {'text': 'xx双回线', 'start':15, 'end':20}] 'com':[{'text': '出力', 'start':10, 'end':12 }, {'text': '潮流', 'start':20, 'end':22}] 'preadv':[] 'endadv':[{'text': '不超过10万千瓦', 'start':22, 'end':30}] 'preind':[] 'endind':[] 'ind':[] |
Table 5 Entity recognition example of power grid fault handling plan
实体识别 | 内容展示 | |
输入模板 | 模板提示 = ['sub','act','obj','com','preadv','endadv','preind','endind','ind'] | |
输入文本 | "xx省调增加xx机组出力,控制xx双回线潮流不超过10万千瓦。" | |
实体识别结果 | 'sub':[{'text': 'xx省调', 'start': 0, 'end': 4}] 'act':[{'text': '增加', 'start':4, 'end': 6}, {'text': '控制', 'start': 13, 'end': 15,}] 'obj':[{'text': 'xx机组', 'start':6, 'end': 10,}, {'text': 'xx双回线', 'start':15, 'end':20}] 'com':[{'text': '出力', 'start':10, 'end':12 }, {'text': '潮流', 'start':20, 'end':22}] 'preadv':[] 'endadv':[{'text': '不超过10万千瓦', 'start':22, 'end':30}] 'preind':[] 'endind':[] 'ind':[] |
1 | 陈国平, 李明节, 许涛. 特高压交直流电网系统保护及其关键技术[J]. 电力系统自动化, 2018, 42 (22): 2- 10. |
CHEN Guoping, LI Mingjie, XU Tao. System protection and its key technologies of UHV AC and DC power grid[J]. Automation of Electric Power Systems, 2018, 42 (22): 2- 10. | |
2 | 李明节, 陶洪铸, 许洪强, 等. 电网调控领域人工智能技术框架与应用展望[J]. 电网技术, 2020, 44 (2): 393- 400. |
LI Mingjie, TAO Hongzhu, XU Hongqiang, et al. The technical framework and application prospect of artificial intelligence application in the field of power grid dispatching and control[J]. Power System Technology, 2020, 44 (2): 393- 400. | |
3 | 许洪强, 姚建国, 南贵林, 等. 未来电网调度控制系统应用功能的新特征[J]. 电力系统自动化, 2018, 42 (1): 1- 7. |
XU Hongqiang, YAO Jianguo, NAN Guilin, et al. New features of application function for future dispatching and control systems[J]. Automation of Electric Power Systems, 2018, 42 (1): 1- 7. | |
4 | 张晓华, 冯长有, 王永明, 等. 电网调控机器人设计思路[J]. 电力系统自动化, 2019, 43 (13): 1- 8. |
ZHANG Xiaohua, FENG Changyou, WANG Yongming, et al. Design ideas of robotic dispatcher for power grid[J]. Automation of Electric Power Systems, 2019, 43 (13): 1- 8. | |
5 | 陶洪铸, 翟明玉, 许洪强, 等. 适应调控领域应用场景的人工智能平台体系架构及关键技术[J]. 电网技术, 2020, 44 (2): 412- 419. |
TAO Hongzhu, ZHAI Mingyu, XU Hongqiang, et al. Architecture and key technologies of artificial intelligence platform oriented for power grid dispatching and control application scenarios[J]. Power System Technology, 2020, 44 (2): 412- 419. | |
6 | 王福贺, 海威, 张越, 等. 电网线路故障处置智能调度机器人研究及应用[J]. 电气自动化, 2021, 43 (3): 1- 3, 23. |
WANG Fuhe, HAI Wei, ZHANG Yue, et al. Research and application of intelligent dispatching robots handling grid line faults[J]. Electrical Automation, 2021, 43 (3): 1- 3, 23. | |
7 | 余建明, 王小海, 张越, 等. 面向智能调控领域的知识图谱构建与应用[J]. 电力系统保护与控制, 2020, 48 (3): 29- 35. |
YU Jianming, WANG Xiaohai, ZHANG Yue, et al. Construction and application of knowledge graph for intelligent dispatching and control[J]. Power System Protection and Control, 2020, 48 (3): 29- 35. | |
8 | 胡怀伟, 富英, 张越, 等. 基于自然语言理解的故障处置预案语义建模研究及应用[J]. 电力信息与通信技术, 2022, 20 (5): 68- 73. |
HU Huaiwei, FU Ying, ZHANG Yue, et al. Research and application of semantic modeling of fault handling plan based on natural language understanding[J]. Electric Power Information and Communication Technology, 2022, 20 (5): 68- 73. | |
9 | 戴宇欣, 张俊, 季知祥, 等. 基于功能缺陷文本的电力系统二次设备智能诊断与辅助决策[J]. 电力自动化设备, 2014, 40 (8): 1537- 1562. |
DAI Yuxin, ZHANG Jun, JI Zhixiang, et al. Intelligent diagnosis and auxiliary decision of power system secondary equipment based on functional defect text[J]. Electric Power Automation Equipment, 2014, 40 (8): 1537- 1562. | |
10 | . [J]. 2014, 40 (8): 1537- 1562. |
YANG Jinfeng, YU Qiubin, GUAN Yi, et al. An overview of research on electronic medical record oriented named entity recognition and entity relation extraction[J]. Acta Automatica Sinica, 2014, 40 (8): 1537- 1562. | |
11 | 鲁华永, 袁越, 郭泓佐, 等. 基于正则表达式的变电站集中监控信息解析方法[J]. 电力系统自动化, 2017, 41 (5): 78- 83. |
LU Huayong, YUAN Yue, GUO Hongzuo, et al. Regular expressions based information analytic method for substation centralized monitoring[J]. Automation of Electric Power Systems, 2017, 41 (5): 78- 83. | |
12 | 李慧林, 柴玉梅, 孙穆祯. 面向文本命名实体识别的深层网络模型[J]. 小型微型计算机系统, 2019, 40 (1): 50- 57. |
LI Huilin, CHAI Yumei, SUN Muzhen. Deep network model for text named entity recognition[J]. Journal of Chinese Computer Systems, 2019, 40 (1): 50- 57. | |
13 | 陈斌, 周勇, 刘兵. 基于卷积双向长短期记忆网络的事件触发词抽取[J]. 计算机工程, 2019, 45 (1): 153- 158. |
CHEN Bin, ZHOU Yong, LIU Bing. Event trigger word extraction based on convolutional bidirectional long short term memory network[J]. Computer Engineering, 2019, 45 (1): 153- 158. | |
14 | 吴文涛, 李培峰, 朱巧明. 基于混合神经网络的实体和事件联合抽取方法[J]. 中文信息学报, 2019, 33 (8): 77- 83. |
WU Wentao, LI Peifeng, ZHU Qiaoming. Joint extraction of entities and events by a hybrid neural network[J]. Journal of Chinese Information Processing, 2019, 33 (8): 77- 83. | |
15 | 江叶峰, 孙少华, 仇晨光, 等. 电网故障处置预案文本中的命名实体识别研究[J]. 电力工程技术, 2021, 40 (5): 177- 183. |
JIANG Yefeng, SUN Shaohua, QIU Chenguang, et al. Named entity recognition in power fault disposal preplan text[J]. Electric Power Engineering Technology, 2021, 40 (5): 177- 183. | |
16 | 单连飞, 张越. 电网调度专业语料库构建方法研究及应用[J]. 机械与电子, 2022, 40 (4): 73- 76, 80. |
SHAN Lianfei, ZHANG Yue. Research and application for construction method of power grid dispatching professional corpus[J]. Machinery & Electronics, 2022, 40 (4): 73- 76, 80. | |
17 | 丁禹, 尚学伟, 米为民. 基于深度学习的电网调控文本知识抽取方法[J]. 电力系统自动化, 2020, 44 (24): 161- 168. |
DING Yu, SHANG Xuewei, MI Weimin. Deep learning based knowledge extraction method for text of power grid dispatch and control[J]. Automation of Electric Power Systems, 2020, 44 (24): 161- 168. | |
18 | 佟佳弘, 武志刚, 管霖, 等. 电力调度文本的自然语言理解与解析技术及应用[J]. 电网技术, 2020, 44 (11): 4148- 4156. |
TONGJIA Hong, WU Zhigang, GUAN Lin, et al. Power dispatching text analysis and application based on natural language understanding[J]. Power System Technology, 2020, 44 (11): 4148- 4156. | |
19 | 蒋晨, 王渊, 胡俊华, 等. 基于深度学习的电力实体信息识别方法[J]. 电网技术, 2021, 45 (6): 2141- 2149. |
JIANG Chen, WANG Yuan, HU Junhua, et al. Power entity information recognition based on deep learning[J]. Power System Technology, 2021, 45 (6): 2141- 2149. | |
20 | LU Y J, LIU Q, DAI D, et al. Unified structure generation for universal information extraction[EB/OL]. 2022: arXiv: 2203.12277.https://arxiv.org/abs/2203.12277.pdf. |
21 | SUN Y, WANG S H, FENG S K, et al. ERNIE 3.0: large-scale knowledge enhanced pre-training for language understanding and generation[EB/OL]. 2021: arXiv: 2107.02137.https://arxiv.org/abs/2107.02137.pdf. |
22 |
BONETTA G, CANCELLIERE R, LIU D, et al. Retrieval-augmented transformer-XL for close-domain dialog generation[J]. The International FLAIRS Conference Proceedings, 2021, 34 (1): 2021.
DOI |
23 | 纪鹏志, 李光肖, 王琳, 等. 基于Transformer深度学习网络的主动配电网多元源荷灾损辨识方法[J]. 电力建设, 2023, 44(3): 56–65. |
JI Pengzhi, LI Guangxiao, WANG Lin, et al. Transformer-based evaluation method of power outage in active distribution networks with multiple sources and loads[J]. Electric Power Construction, 2023, 44(3): 56–65. | |
24 | DAI Z H, YANG Z L, YANG Y M, et al. Transformer-XL: attentive language models beyond a fixed-length context[EB/OL]. 2019: arXiv: 1901.02860.https://arxiv.org/abs/1901.02860.pdf |
25 | LI X, FENG J, MENG Y, et al. A unified MRC framework for named entity recognition[C]//Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2020. DOI:10.18653/V1/2020.ACL-MAIN.519. |
26 | YANG R Q, ZHANG J H, GAO X, et al. Simple and effective text matching with richer alignment features[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019: 4699–4709. |
[1] | LIU He, PI Junbo, SONG Pengcheng, ZHAO Hanlin, ZHANG Yue, LIU Xianzhuang. An Event Extraction Method for Power Dispatching Text Based on Hybrid Neural Network [J]. Electric Power, 2022, 55(9): 105-110,120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||