Electric Power ›› 2021, Vol. 54 ›› Issue (4): 42-55.DOI: 10.11930/j.issn.1004-9649.202006273
Previous Articles Next Articles
HU Ming1, LIU Shujun2, YANG Jianjun3, XIE Shuhong4, ZHANG Hongliang1, YAN Zhiyu1
Received:
2020-07-02
Revised:
2020-10-09
Published:
2021-04-23
Supported by:
HU Ming, LIU Shujun, YANG Jianjun, XIE Shuhong, ZHANG Hongliang, YAN Zhiyu. Application Status and Research Prospects of HVDC Extruded Cables[J]. Electric Power, 2021, 54(4): 42-55.
[1] 汤广福, 贺之渊, 庞辉. 柔性直流输电工程技术研究、应用及发展[J]. 电力系统自动化, 2013, 37(15): 3-14 TANG Guangfu, HE Zhiyuan, PANG Hui. Research, application and development of VSC-HVDC engineering technology[J]. Automation of Electric Power Systems, 2013, 37(15): 3-14 [2] 马为民, 吴方劼, 杨一鸣, 等. 柔性直流输电技术的现状及应用前景分析[J]. 高电压技术, 2014, 40(8): 2429-2439 MA Weimin, WU Fangjie, YANG Yiming, et al. Flexible HVDC transmission technology's today and tomorrow[J]. High Voltage Engineering, 2014, 40(8): 2429-2439 [3] 饶宏, 冷祥彪, 潘雅娴, 等. 全球直流输电发展分析及国际化拓展建议[J]. 南方电网技术, 2019, 13(10): 1-7 RAO Hong, LENG Xiangbiao, PAN Yaxian, et al. Analysis of the global HVDC power transmission development and the suggestion of the HVDC export[J]. Southern Power System Technology, 2019, 13(10): 1-7 [4] 傅春翔, 汪天呈, 郦洪柯, 等. 用于海上风电并网的柔性直流系统接地方式研究[J]. 电力系统保护与控制, 2019, 47(20): 119-126 FU Chunxiang, WANG Tianke, LI Hongke, et al. Study on grounding methods of VSC-HVDC for off-shore wind farm integration[J]. Power System Protection and Control, 2019, 47(20): 119-126 [5] 焦瑞浩, 丁剑, 任建文, 等. 适应大规模清洁能源并网和传输的未来新型直流电网研究[J]. 智慧电力, 2019, 47(6): 9-18 JIAO Ruihao, DING Jian, REN Jianwen, et al. Future new DC power grids for large-scale clean energy integration and transmission[J]. Smart Power, 2019, 47(6): 9-18 [6] LI G, AN T, LIANG J, et al. Studies of commutation failures in Hybrid LCC/MMC HVDC systems[J]. Global Energy Interconnection, 3(3): 193-204. [7] 董明, 王丽, 吴雪舟, 等. 油纸绝缘介电响应检测技术研究现状与发展[J]. 高电压技术, 2016, 42(4): 1179-1189 DONG Ming, WANG Li, WU Xuezhou, et al. Status and progress in study of dielectric response technology for oil-paper insulation[J]. High Voltage Engineering, 2016, 42(4): 1179-1189 [8] 黄兴溢, 张军, 江平开. 热塑性电力电缆绝缘材料: 历史与发展[J]. 高电压技术, 2018, 44(5): 1377-1398 HUANG Xingyi, ZHANG Jun, JIANG Pingkai. Thermoplastic insulation materials for power cables: history and progress[J]. High Voltage Engineering, 2018, 44(5): 1377-1398 [9] 王霞, 王陈诚, 朱有玉, 等. 高压直流塑料电缆绝缘用纳米改性交联聚乙烯中的空间电荷特性[J]. 高电压技术, 2015, 41(4): 1096-1103 WANG Xia, WANG Chencheng, ZHU Youyu, et al. Space charge profiles in XLPE nano dielectrics used for HVDC plastic cable insulation[J]. High Voltage Engineering, 2015, 41(4): 1096-1103 [10] 屠德民, 王霞, 吕泽鹏, 等. 以能带理论诠释直流聚乙烯绝缘中空间电荷的形成和抑制机理[J]. 物理学报, 2012, 61(1): 409-415 TU Demin, WANG Xia, LÜ Zepeng, et al. Formation and inhibition mechanisms of space charges in direct current polyethylene insulation explained by energy band theory[J]. Acta Physica Sinica, 2012, 61(1): 409-415 [11] 李吉晓, 张冶文, 郑飞虎, 等. 交联聚乙烯中空间电荷分布及其机理研究[J]. 应用科学学报, 2001(4): 283-287 LI Jixiao, ZHANG Yewen, ZHENG Feihu, et al. Distribution of space charges and analysis of trap levels in cross-linked polyethylene[J]. Journal of Applied Sciences, 2001(4): 283-287 [12] 兰莉. 温度对聚合物绝缘中空间电荷行为的影响[D]. 上海: 上海交通大学, 2015. LAN Li. Effect of temperature on space charge distribution in polymer insulation[D]. Shanghai: Shanghai Jiaotong University, 2015. [13] 张洪亮, 张建民, 于洪淼, 等. 中国首根±525 kV XLPE绝缘直流电缆的设计与试验验证[J]. 南方电网技术, 2018, 12(1): 1-6 ZHANG Hongliang, ZHANG Jianmin, YU Hongmiao, et al. Design and test verification of China's first ±525 kV XLPE insulated DC cable[J]. Southern Power System Technology, 2018, 12(1): 1-6 [14] LEE S H, PARK J K, HAN J H, et al. Space charge and electrical conduction in maleic anhydride-grafted polyethylene[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(6): 1132-1139. [15] SUH K S, YOON H G, LEE C R, et al. Space charge behavior of acrylic monomer-grafted polyethylene[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(3): 282-287. [16] 尹毅, 屠德民, 霍振宇, 等. 氯化聚乙烯共混对聚乙烯的空间电荷效应的影响[J]. 电工技术学报, 2000(4): 52-57 YIN Yi, TU Demin, HUO Zhenyu, et al. Influence of blending chlorinated polyethylene on the space charge effect in polyethylene[J]. Transactions of China Electrotechnical Society, 2000(4): 52-57 [17] 杨佳明, 王暄, 韩宝忠, 等. LDPE纳米复合介质的直流电导特性及其对高压直流电缆中电场分布的影响[J]. 中国电机工程学报, 2014, 34(9): 1454-1461 YANG Jiaming, WANG Xuan, HAN Baozhong, et al. DC conductivity characteristic of LDPE nanocomposite and its effect on electric field distribution in HVDC cables[J]. Proceedings of the CSEE, 2014, 34(9): 1454-1461 [18] NELSON J K, FOTHERGILL J C, DISSADO L A, et al. Towards an understanding of nanometric dielectrics[C]//Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Cancun, Mexico. IEEE, 2002: 295-298. [19] 王霞, 成霞, 陈少卿, 等. 纳米ZnO/低密度聚乙烯复合材料的介电特性[J]. 中国电机工程学报, 2008(19): 13-19 WANG Xia, CHENG Xia, CHEN Shaoqing, et al. Dielectric properties of the composites of nano-ZnO/low-density polyethylene[J]. Proceedings of the CSEE, 2008(19): 13-19 [20] WANG X, LV Z, WU K, et al. Study of the factors that suppress space charge accumulation in LDPE nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(4): 1670-1679. [21] ROY M, NELSON J K, MACCRONE R K, et al. Polymer nanocomposite dielectrics-the role of the interface[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 629-643. [22] 郑煜, 吴建东, 王俏华, 等. 空间电荷与直流电导联合测试技术用于纳米MgO抑制XLPE中空间电荷的研究[J]. 电工技术学报, 2012, 27(5): 126-131 ZHENG Yu, WU Jiandong, WANG Qiaohua, et al. Research on the space charge suppressing mechanism of nano-MgO in XLPE with a joint measuring technology of DC conduction and space charge[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 126-131 [23] 范勇, 张洪亮, 杨瑞宵, 等. 三层复合PI薄膜厚度比对其电导特性影响[J]. 哈尔滨理工大学学报, 2013, 18(2): 21-24, 29 FAN Yong, ZHANG Hongliang, YANG Ruixiao, et al. The influence of thickness ratio of three-layer PI composite films on conductance property[J]. Journal of Harbin University of Science and Technology, 2013, 18(2): 21-24, 29 [24] 李淑琦. 空间电荷特性在挤包绝缘交联聚乙烯高压直流电缆老化评估中的应用研究[D]. 上海: 上海交通大学, 2015. LI Shuqi. Application of space charge characteristics in ageing assessment of extruded HVDC XLPE cables[D]. Shanghai: Shanghai Jiaotong University, 2015. [25] 刘德远, 张昱, 邓云坤, 等. 工频电场下全尺寸电缆的空间电荷检测系统研制[J]. 高电压技术, 2019, 45(10): 3327-3334 LIU Deyuan, ZHANG Yu, DENG Yunkun, et al. Development of space charge measurement system used for full-size cable under power frequency electric stress[J]. High Voltage Engineering, 2019, 45(10): 3327-3334 [26] 侯帅, 惠宝军, 傅明利, 等. 交联聚乙烯挤出绝缘高压直流电缆全工况运行考核及温度梯度下空间电荷测量[J]. 高电压技术, 2018, 44(5): 1467-1474 HOU Shuai, HUI Baojun, FU Mingli, et al. Performance evaluation for XLPE extruded insulation HVDC cable and space charge measurement under operating condition with temperature difference[J]. High Voltage Engineering, 2018, 44(5): 1467-1474 [27] 钟琼霞, 兰莉, 吴建东, 等. 交联副产物对交联聚乙烯中空间电荷行为的影响[J]. 中国电机工程学报, 2015, 35(11): 2903-2910 ZHONG Qiongxia, LAN Li, WU Jiandong, et al. The influence of cross-linked by-products on space charge behaviour in XLPE[J]. Proceedings of the CSEE, 2015, 35(11): 2903-2910 [28] 王国忠. 交联副产物对交联聚乙烯电缆绝缘热老化性能影响的探讨[J]. 电线电缆, 2006(4): 10-12 WANG Guozhong. Investigation of the effect of the cross-linking by-producton the heat ageing properties of XLPE cable insulation[J]. Electric Wire & Cable, 2006(4): 10-12 [29] 范路, 陈萌, 张洪亮, 等. 型式试验对高压直流电缆交联副产物迁移过程及电导特性的影响[J]. 电气工程学报, 2018, 13(11): 44-51 FAN Lu, CHEN Meng, ZHANG Hongliang, et al. Effect of type test on migration process of cross-linked by-products and conduction characteristics of HVDC cables[J]. Journal of Electrical Engineering, 2018, 13(11): 44-51 [30] 朱晓辉. 交联工艺对交联聚乙烯绝缘特性的影响[D]. 天津: 天津大学, 2010. ZHU Xiaohui. Effects of cross-linking method on insulation properties of cross-linked polyethylene[D]. Tianjin: Tianjin University, 2010. [31] 房晟辰, 王浩鸣, 陈磊, 等. DCP分解副产物对交/直流交联聚乙烯电缆绝缘介电性能的影响[J]. 合成材料老化与应用, 2019, 48(3): 16-19 FANG Shengchen, WANG Haoming, CHEN Lei, et al. Influence of crosslinking by-products on dielectric properties of AC/DC XLPE cable insulation[J]. Synthetic Materials Aging and Application, 2019, 48(3): 16-19 [32] 欧阳本红, 赵健康, 李欢, 等. 交联副产物对高压XLPE电缆绝缘介电和力学性能的影响[J]. 绝缘材料, 2015, 48(5): 31-34, 39 OUYANG Benhong, ZHAO Jiankang, LI Huan, et al. Influence of crosslinking by-products on dielectric and mechanical properties of XLPE cable insulation[J]. Insulating Materials, 2015, 48(5): 31-34, 39 [33] 任虹光, 武拥建. 基于热失重法的高压交联电缆副产物释放研究[J]. 机械, 2017, 44(3): 10-13 REN Hongguang, WU Yongjian. Research of high voltage XLPE cable's byproducts release by thermal weightlessness method[J]. Machinery, 2017, 44(3): 10-13 [34] 屠亦军, 张洪亮, 高震, 等. 脱气处理对交联聚乙烯中交联副产物及空间电荷特性的影响[J]. 绝缘材料, 2018, 51(4): 58-63 TU Yijun, ZHANG Hongliang, GAO Zhen, et al. Effects of degassing treatment on crosslinking byproducts and space charge characteristics in cross-linked polyethylene[J]. Insulating Materials, 2018, 51(4): 58-63 [35] HANLEY T L, BURFORD R P, FLEMING R J, et al. A general review of polymeric insulation for use in HVDC cables[J]. IEEE Electrical Insulation Magazine, 2003, 19(1): 13-24. [36] 谢书鸿, 傅明利, 尹毅, 等. 中国交联聚乙烯绝缘高压直流电缆发展的三级跳: 从160kV到200kV再到320kV[J]. 南方电网技术, 2015, 9(10): 5-12 XIE Shuhong, FU Mingli, YIN Yi, et al. Triple Jumps of XLPE insulated HVDC cable development in China: from 160 kV to 200 kV and then to 320 kV[J]. Southern Power System Technology, 2015, 9(10): 5-12 [37] 钟力生, 任海洋, 曹亮, 等. 挤包绝缘高压直流电缆的发展[J]. 高电压技术, 2017, 43(11): 3473-3489 ZHONG Lisheng, REN Haiyang, CAO Liang, et al. Development of high voltage direct current extruded cables[J]. High Voltage Engineering, 2017, 43(11): 3473-3489 [38] 赵健康, 赵鹏, 陈铮铮, 等. 高压直流电缆绝缘材料研究进展评述[J]. 高电压技术, 2017, 43(11): 3490-3503 ZHAO Jiankang, ZHAO Peng, CHEN Zhengzheng, et al. Review on progress of HVDC cables insulation materials[J]. High Voltage Engineering, 2017, 43(11): 3490-3503 [39] 邓显波, 欧阳本红, 孔祥海, 等. 大截面高压电缆导体交流电阻的优化[J]. 高电压技术, 2016, 42(2): 522-527 DENG Xianbo, OUYANG Benhong, KONG Xianghai, et al. Optimization of AC resistance of large cross-section high-voltage cable conductor[J]. High Voltage Engineering, 2016, 42(2): 522-527 [40] 额定电压500kV及以下直流输电用挤包绝缘电力电缆系统第1部分: 试验方法和要求: GB/T 31489.1—2015[S]. 2015. [41] 张洪亮, 谢书鸿, 尹毅, 等. 厦门柔直工程±320kV直流电缆绝缘及外护层结构选型与论证[J]. 高电压技术, 2016, 42(10): 3139-3146 ZHANG Hongliang, XIE Shuhong, YIN Yi, et al. Selection and verification of insulation and sheath structure of ±320 kV DC cable for Xiamen flexible DC transmission project[J]. High Voltage Engineering, 2016, 42(10): 3139-3146 [42] Recommendations for testing DC extruded cable systems for power transmission at a rated voltage up to 500 kV: CIGRE TB 496−2012[S]. 2012. [43] 张洪亮, 张建民, 谢书鸿, 等. 高压直流陆缆及海缆用大截面型线导体纵向阻水方式研究及验证[J]. 高电压技术, 2017, 43(11): 3626-3633 ZHANG Hongliang, ZHANG Jianmin, XIE Shuhong, et al. Study and verification of large section and longitudinally water-blocking heteromorphic conductor for HVDC land and submarine cable[J]. High Voltage Engineering, 2017, 43(11): 3626-3633 [44] 中天科技海缆有限公司. ±500kV柔性直流电缆及海缆用梯形单线阻水导体. 中国: ZL 201620848473.1[P]. 2017.04. 12. [45] High voltage direct current(HVDC) power transmission-cables with extruded insulation and their accessories for rated voltages up to 320kV for land applications-Test methods and requirements: IEC 62895[S]. 2017. [46] 何金良, 党斌, 周垚, 等. 挤压型高压直流电缆研究进展及关键技术述评[J]. 高电压技术, 2015, 41(5): 1417-1429 HE Jinliang, DANG Bin, ZHOU Yao, et al. Reviews on research progress and key technology in extruded cables for HVDC transmission[J]. High Voltage Engineering, 2015, 41(5): 1417-1429 [47] 何金良, 彭琳, 周垚. 环保型高压直流电缆绝缘材料研究进展[J]. 高电压技术, 2017, 43(2): 337-343 HE Jinliang, PENG Lin, ZHOU Yao. Research progress of environment-friendly HVDC power cable insulation materials[J]. High Voltage Engineering, 2017, 43(2): 337-343 [48] KIM D W, YOSHINO K. Morphological characteristics and electrical conduction in syndiotactic polypropylene[J]. Journal of Physics D: Applied Physics, 2000, 33(4): 464-471. [49] ZHOU Y, HE J L, HU J, et al. Evaluation of polypropylene/polyolefin elastomer blends for potential recyclable HVDC cable insulation applications[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(2): 673-681. [50] ZHOU Y, HE J L, HU J, et al. Surface-modified MgO nanoparticle enhances the mechanical and direct-current electrical characteristics of polypropylene/polyolefin elastomer nanodielectrics[J]. Journal of Applied Polymer Science, 2016, 133(1): 42863. [51] BELLI S, PEREGO G, BAREGGI A, et al. P-Laser: Breakthrough in power cable systems[C]//2010 IEEE International Symposium on Electrical Insulation. San Diego, CA, USA. IEEE, 2010: 1-5. |
[1] | XU Xiaobin, LIU Aijing, LE Yanjie, LIU Hechen, GUO Zhanpeng, LIU Yunpeng. Effect of DC Pre-stress on Space Charge and Electrical Tree in XLPE with Needle-Plate Electrodes [J]. Electric Power, 2021, 54(4): 56-62,71. |
[2] | HE Yifei, WU Kai, WU Yang, WANG Jinghao, ZHANG Chunyang. Impact of Different Pressures on Charge Transport in EPDM [J]. Electric Power, 2021, 54(4): 19-25. |
[3] | NIE Yongjie, JING Yu, ZHANG Meng, CHEN Haopeng, ZHAO Xianping, ZHAO Tengfei, XIANG Enxin, WANG Ke, LU Guanghao, ZHU Yuanwei. Electrochromic and Dielectric Characteristics of Advanced Insulating Polymer under Various Electric Fields [J]. Electric Power, 2021, 54(11): 144-152. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 407
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 107
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||