[1] 周原冰, 杨方, 余潇潇, 等. 中国能源电力碳中和实现路径及实施关键问题[J]. 中国电力, 2022, 55(5): 1–11 ZHOU Yuanbing, YANG Fang, YU Xiaoxiao, et al. Realization pathways and key problems of carbon neutrality in China's energy and power system[J]. Electric Power, 2022, 55(5): 1–11 [2] 蔡欢, 袁旭峰, 熊炜, 等. 柔性互联配电网运行调度研究综述[J]. 智慧电力, 2022, 50(6): 92–99, 106 CAI Huan, YUAN Xufeng, XIONG Wei, et al. Review on operation scheduling of flexible interconnected distribution network[J]. Smart Power, 2022, 50(6): 92–99, 106 [3] 刘辉, 王阔. 新能源低电压穿越无功电流对暂态电压安全约束的影响[J]. 中国电力, 2022, 55(2): 152–158 LIU Hui, WANG Kuo. LVRT reactive current index of renewable units based on the constraints of transient voltage[J]. Electric Power, 2022, 55(2): 152–158 [4] 李睿智, 刘念, 延肖何. 基于势博弈的综合能源系统用户能量管理优化方法[J]. 电力科学与技术学报, 2021, 36(1): 21–31 LI Ruizhi, LIU Nian, YAN Xiaohe. An optimization method for user energy management of integrated energy system based on potential game[J]. Journal of Electric Power Science and Technology, 2021, 36(1): 21–31 [5] KUNDUR P, BALU N J, LAUBY M G. Power system stability and control: vol. 7[M]. New York: McGraw-hill, 1994. [6] 钟璐, 熊俊, 张茜, 等. 基于光伏减载的电力系统紧急降风险控制方法[J]. 电力系统保护与控制, 2021, 49(14): 157–167 ZHONG Lu, XIONG Jun, ZHANG Xi, et al. A risk-reduction emergency control method of a power system based on photovoltaic power reserve[J]. Power System Protection and Control, 2021, 49(14): 157–167 [7] GUO S, NORRIS S, BIALEK J. Adaptive parameter estimation of power system dynamic model using modal information[J]. IEEE Transactions on Power Systems, 2014, 29(6): 2854–2861. [8] DING F, PAN J, ALSAEDI A, et al. Gradient-based iterative parameter estimation algorithms for dynamical systems from observation data[J]. Mathematics, 2019, 7(5): 428. [9] 李培强, 李慧, 李欣然. 基于灵敏度与相关性的综合负荷模型参数优化辨识策略[J]. 电工技术学报, 2016, 31(16): 181–188 LI Peiqiang, LI Hui, LI Xinran. Optimized identification strategy for composite load model parameters based on sensitivity and correlation analysis[J]. Transactions of China Electrotechnical Society, 2016, 31(16): 181–188 [10] ACILAN E, GOL M. Identifiability analysis for power plant parameter calibration in the presence of collinear parameters[J]. IEEE Transactions on Power Systems, 2022, 37(4): 2988–2997. [11] YANG B, WANG J B, ZHANG X S, et al. Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification[J]. Energy Conversion and Management, 2020, 208: 112595. [12] HUANG R K, DIAO R S, LI Y Y, et al. Calibrating parameters of power system stability models using advanced ensemble Kalman filter[J]. IEEE Transactions on Power Systems, 2018, 33(3): 2895–2905. [13] 朱建全, 易江文, 庄远灿, 等. 基于不敏卡尔曼粒子滤波的动态电力负荷在线建模[J]. 南方能源建设, 2017, 4(2): 51–57 ZHU Jianquan, YI Jiangwen, ZHUANG Yuancan, et al. On-line dynamic electric load modeling based on unscented Kalman particle filter[J]. Southern Energy Construction, 2017, 4(2): 51–57 [14] KHAZEIYNASAB S R, QI J J. Generator parameter calibration by adaptive approximate Bayesian computation with sequential Monte Carlo sampler[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 4327–4338. [15] NAGI R, HUAN X, CHEN Y C. Bayesian inference of parameters in power system dynamic models using trajectory sensitivities[J]. IEEE Transactions on Power Systems, 2022, 37(2): 1253–1263. [16] AZMY A M, ERLICH I, SOWA P. Artificial neural network-based dynamic equivalents for distribution systems containing active sources[J]. IEE Proceedings-Generation, Transmission and Distribution, 2004, 151(6): 681. [17] SHARMA P, AJJARAPU V, VAIDYA U. Data-driven identification of nonlinear power system dynamics using output-only measurements[EB/OL]. 2021: arXiv: 2110.01469.https://arxiv.org/abs/2110.01469. [18] ZHOU Y F, ZHANG P. Neuro-reachability of networked microgrids[J]. IEEE Transactions on Power Systems, 2022, 37(1): 142–152. [19] OSPINA L D P, SALAZAR V U, OSPINA D P. Dynamic equivalents of nonlinear active distribution networks based on Hammerstein-Wiener models: an application for long-term power system phenomena[J]. IEEE Transactions on Power Systems, 2022, 37(6): 4286–4296. [20] 张琦, 杨健维, 向悦萍, 等. 计及气象因素的区域电动汽车充电负荷建模方法[J]. 电力系统保护与控制, 2022, 50(6): 14–22 ZHANG Qi, YANG Jianwei, XIANG Yueping, et al. Regional electric vehicle charging load modeling method considering meteorological factors[J]. Power System Protection and Control, 2022, 50(6): 14–22 [21] CHEN R T Q, RUBANOVA Y, BETTENCOURT J, et al. Neural ordinary differential equations[C]//Proceedings of the 32 nd International Conference on Neural Information Processing Systems. Montréal, Canada. New York: ACM, 2018: 6572–6583. [22] SUN Y F, ZHANG L N, SCHAEFFER H. NeuPDE: neural network based ordinary and partial differential equations for modeling time-dependent data[C/OL]//Mathematical and Scientific Machine Learning. PMLR, 2020: 352–372. [23] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359–366. [24] KAWAHARA Y. Dynamic mode decomposition with reproducing kernels for Koopman spectral analysis[C]//Proceedings of the 30 th International Conference on Neural Information Processing Systems. Barcelona, Spain. New York: ACM, 2016: 919–927. [25] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 770–778. [26] XU Y F, QIN M, HE J, et al. Modeling and operation characteristics of large-scale photovoltaic power plants based on PSASP[C]//2014 17 th International Conference on Electrical Machines and Systems (ICEMS). Hangzhou, China. IEEE, 2015: 3226–3230. [27] XIAO T N, CHEN Y, WANG J Q, et al. Exploration of artificial intelligence oriented power system dynamic simulators[J]. Journal of Modern Power Systems and Clean Energy, 2022, PP(99): 1–10. [28] KINGMA D P, BA J. Adam: a method for stochastic optimization [EB/OL]. 2014: arXiv: 1412.6980.https://arxiv.org/abs/1412.6980.
|