[1] 中国能源网. 2020分布式能源研究报告[R]. 2020. [2] 姚金楠. 分布式光伏迎来新一轮高速增长[N]. 中国能源报, 2022-03-28(9). [3] 李丰君, 王磊, 赵健, 等. 基于天气融合和LSTM网络的分布式光伏短期功率预测方法[J/OL]. 中国电力: 1–9[2022-06-14]. http://kns.cnki.net/kcms/detail/11.3265.TM.20220217.0933.006.html. LI Fengjun, WANG Lei, ZHAO Jian, et al. Research on distributed photovoltaic short-term power prediction method based on weather fusion and LSTM-net[J/OL]. Electric Power: 1–9[2022-06-14]. http://kns.cnki.net/kcms/detail/11.3265.TM.20220217.0933.006.html. [4] FENG Y, GONG D Z, ZHANG Q W, et al. Evaluation of temperature-based machine learning and empirical models for predicting daily global solar radiation[J]. Energy Conversion and Management, 2019, 198: 111780. [5] DAS U K, TEY K S, SEYEDMAHMOUDIAN M, et al. Forecasting of photovoltaic power generation and model optimization: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 912–928. [6] 司志远, 杨明, 于一潇, 等. 基于卫星云图特征区域定位的超短期光伏功率预测方法[J]. 高电压技术, 2021, 47(4): 1214–1223 SI Zhiyuan, YANG Ming, YU Yixiao, et al. Ultra-short-term photovoltaic power prediction method based on satellite image feature region positioning[J]. High Voltage Engineering, 2021, 47(4): 1214–1223 [7] 白捷予, 董存, 王铮, 等. 考虑云层遮挡的光伏发电功率超短期预测技术[J/OL]. 高电压技术: 1−11 [2022-06-14]. DOI: 10.13336/j. 1003-6520. hve. 20211769. BAI Jieyu, DONG Cun, WANG Zheng, et al. Ultra-short-term prediction of photovoltaic power generation considering cloud cover[J/OL]. High Voltage Engineering: 1−11 [2022-06-14]. DOI:10.13336/j.1003-6520.hve.20211769. [8] 师浩琪, 郭力, 刘一欣, 等. 基于多源气象预报总辐照度修正的光伏功率短期预测[J]. 电力自动化设备, 2022, 42(3): 104–112 SHI Haoqi, GUO Li, LIU Yixin, et al. Short-term forecasting of photovoltaic power based on total irradiance correction of multi-source meteorological forecast[J]. Electric Power Automation Equipment, 2022, 42(3): 104–112 [9] 韦泽恺. 基于深度学习的光伏短期功率预测方法研究[D]. 北京: 华北电力大学(北京), 2021. WEI Zekai. Research on photovoltaic short-term power prediction method based on deep learning[D]. Beijing: North China Electric Power University, 2021. [10] 张波, 王晓晨, 周旺, 等. 基于机器学习的光伏发电功率预测: 以金华市为例[J]. 技术与市场, 2022, 29(3): 17–22 ZHANG Bo, WANG Xiaochen, ZHOU Wang, et al. Photovoltaic power generation prediction based on machine learning-taking Jinhua City as an example[J]. Technology and Market, 2022, 29(3): 17–22 [11] 焦超凡. 基于机器学习的短期光伏发电功率预测方法研究[D]. 郑州: 中原工学院, 2021. JIAO Chaofan. Research on short-term pv power prediction method based on machine learning[D]. Zhengzhou: Zhongyuan University of Technology, 2021. [12] 孙建波. 基于EEMD与变权组合预测的光伏发电预测模型及应用研究[D]. 北京: 华北电力大学(北京), 2019. SUN Jianbo. Photovoltaic generation prediction model based on EEMD-variable weight combination forecasting and application research[D]. Beijing: North China Electric Power University, 2019. [13] 王振浩, 王翀, 成龙, 等. 基于集合经验模态分解和深度学习的光伏功率组合预测[J/OL]. 高电压技术: 1–10 [2022-06-14]. DOI: 10.13336/j. 1003-6520. hve. 20210971. WANG Zhenhao, WANG Chong, CHENG Long, et al. Photovoltaic power combined prediction based on ensemble empirical mode decomposition and deep learning[J/OL]. High Voltage Engineering: 1–10 [2022-06-14]. DOI:10.13336/j.1003-6520.hve.20210971. [14] 吕伟杰, 方一帆, 程泽. 基于模糊C均值聚类和样本加权卷积神经网络的日前光伏出力预测研究[J]. 电网技术, 2022, 46(1): 231–238 LÜ Weijie, FANG Yifan, CHENG Ze. Prediction of day-ahead photovoltaic output based on FCM-WS-CNN[J]. Power System Technology, 2022, 46(1): 231–238 [15] 乔路丽, 方诗琦, 赵庭锐, 等. 基于相似日和IGA-BP的光伏发电功率预测方法研究[J]. 电网与清洁能源, 2022, 38(1): 128–134 QIAO Luli, FANG Shiqi, ZHAO Tingrui, et al. A study on the forecasting method of photovoltaic power generation based on similar day and IGA-BP[J]. Power System and Clean Energy, 2022, 38(1): 128–134 [16] 徐一伦, 张彬桥, 黄婧, 等. 考虑天气类型和相似日的IWPA-LSSVM光伏发电功率预测[J/OL]. 中国电力: 1–9[2022-06-14]. http://kns.cnki.net/kcms/detail/11.3265.TM.20211109.1202.002.html. XU Yilun, ZHANG Binqiao, HUANG Jing, et al. Forecast of photovoltaic power based on IWPA-LSSVM considering weather type and similar day[J/OL]. Electric Power: 1–9[2022-06-14]. http://kns.cnki.net/kcms/detail/11.3265.TM.20211109.1202.002.html. [17] NAINGGOLAN R, PERANGIN-ANGIN R, SIMARMATA E, et al. Improved the performance of the K-means cluster using the sum of squared error (SSE) optimized by using the elbow method[J]. Journal of Physics: Conference Series, 2019. DOI:10.1088/1742-6596/1361/1012015. [18] YANG Y M, YU H, SUN Z. Aircraft failure rate forecasting method based on Holt-Winters seasonal model[C]//2017 IEEE 2 nd International Conference on Cloud Computing and Big Data Analysis. Chengdu. IEEE, 2017: 520–524.
|