中国电力 ›› 2022, Vol. 55 ›› Issue (9): 38-45.DOI: 10.11930/j.issn.1004-9649.202204083

• 碳中和背景下农业农村综合能源系统 • 上一篇    下一篇

基于集成学习的分布式光伏发电功率日前预测

刘昳娟1, 陈云龙1, 刘继彦1, 张雪梅1, 吴潇雨2, 孔维政2   

  1. 1. 国网山东省电力公司,山东 济南 250002;
    2. 国网能源研究院有限公司,北京 102209
  • 收稿日期:2022-04-19 修回日期:2022-06-23 出版日期:2022-09-28 发布日期:2022-09-20
  • 作者简介:刘昳娟(1975—),女,硕士,高级工程师,从事新能源用能优化研究,E-mail:sddllj@163.com;陈云龙(1974—),男,高级工程师,从事电力经济、电力供需研究,E-mail:chyunlong@163.com;刘继彦(1984—),男,硕士,高级工程师,从事电力市场化交易、综合能源管理研究,E-mail:18553829016@163.com;张雪梅(1986—),女,硕士,中级经济师,从事电力经济、综合能源研究,E-mail:1539834847@qq.com;吴潇雨(1991—),男,博士,工程师,从事微网能量管理、综合能源系统规划仿真研究,E-mail:xiaoyu_wu0314@outlook.com;孔维政(1985—),男,硕士,高级工程师,从事能源互联网规划设计、农村能源系统建设与管理研究,E-mail:kongweizheng@sgeri.sgcc.com.cn
  • 基金资助:
    国家电网有限公司科技项目(面向乡村振兴的农村能源互联网构建技术与业态模式研究,SGSDWF00FCJS2100201)。

Ensemble Learning-Based Day-Ahead Power Forecasting of Distributed Photovoltaic Generation

LIU Yijuan1, CHEN Yunlong1, LIU Jiyan1, ZHANG Xuemei1, WU Xiaoyu2, KONG Weizheng2   

  1. 1. State Grid Shandong Electric Power Co., Ltd., Jinan 250002, China;
    2. State Grid Energy Research Institute Co., Ltd., Beijing 102209, China
  • Received:2022-04-19 Revised:2022-06-23 Online:2022-09-28 Published:2022-09-20
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (Research on Construction Technology and Business Mode of Rural Energy Internet for Rural Revitalization, No.SGSDWF00FCJS2100201)

摘要: 对于光伏发电功率精准的日前预测有助于电网设计未来调度计划,降低新能源发电对电网的冲击,提高消纳率。提出一种Boosting集成学习框架下的光伏发电功率日前预测方法。首先,根据光伏出力主要受天气影响的特点,通过皮尔逊系数获得相关性强的气象因素,利用k-means++对与光伏发电功率相关性极强的总水平辐照度进行聚类以获得相似日数据集;然后,将极限学习机(extreme learning machine,ELM)引入Boosting框架,构建光伏出力日前预测模型(B-ELMs);最后,利用真实光伏电站运行数据验证模型有效性,该模型在试验过程中展现出良好的适应性,最高决策系数(R2)达0.9819。实验结果表明,由于集成学习框架的存在,B-ELMs能对复杂天气下的规律性弱、波动性强的光伏出力曲线提供较为精确的预测结果;同时,相较于深度学习网络,B-ELMs的收敛速度更快,在维持较快训练速度的同时保障更为精确的预测结果。

关键词: 光伏出力预测, 极限学习机, 集成学习, k-means, 日前预测

Abstract: Accurate day-ahead power prediction of photovoltaic generation is helpful to design future scheduling plan of power grid, reduce the impact of new energy generation on power grid and improve the accommodation rate. A day-ahead power forecasting method for photovoltaic generation is proposed based on the Boosting ensemble learning framework. Firstly, according to the characteristics of photovoltaic output which is mainly affected by weather, the meteorological factors with strong correlation are obtained through the Pearson coefficient, and the k-means ++ is used to cluster the total horizontal irradiance that is strongly correlated with photovoltaic generation power to obtain the similar daily datasets. And then, the extreme learning machine (ELM) is introduced into the Boosting framework to build the photovoltaic output day-ahead prediction model (B-ELMs). Finally, the validity of the model is verified using the operation data of real photovoltaic power stations. The proposed model shows good adaptability in the test process and has the highest decision coefficient (R2) of 0.9819. The experimental results show that due to the existence of ensemble learning framework, the B-ELMS can still provide accurate prediction results against the photovoltaic output curves with poor regularity and strong fluctuation under complex weather. At the same time, the B-ELMS has a faster convergence rate compared with deep-learning network, and can provide more accurate prediction results while maintaining faster training speed.

Key words: photovoltaic output forecasting, extreme learning machine, integrated learning, k-means, day-ahead forecasting