[1] 国家发展和改革委员会能源研究所. 中国 2050 高比例可再生能源发展情景暨路径研究[R]. 北京: 国家发展和改革委员会能源研究所, 2015. [2] 李军徽, 冯喜超, 严干贵, 等. 高风电渗透率下的电力系统调频研究综述[J]. 电力系统保护与控制, 2018, 46(2): 163–170 LI Junhui, FENG Xichao, YAN Gangui, et al. Survey on frequency regulation technology in high wind penetration power system[J]. Power System Protection and Control, 2018, 46(2): 163–170 [3] ANDERSON P M, MIRHEYDAR M. A low-order system frequency response model[J]. IEEE Transactions on Power Systems, 1990, 5(3): 720–729. [4] 李东东, 孙雅茹, 徐波, 等. 考虑频率稳定的新能源高渗透率电力系统最小惯量与一次调频容量评估方法[J]. 电力系统保护与控制, 2021, 49(23): 54–61 LI Dongdong, SUN Yaru, XU Bo, et al. Minimum inertia and primary frequency capacity assessment for a new energy high permeability power system considering frequency stability[J]. Power System Protection and Control, 2021, 49(23): 54–61 [5] STANTON K N. Dynamic energy balance studies for simulation of power-frequency transients[C]//IEEE Transactions on Power Apparatus and Systems. IEEE: 110–117. [6] KUNDUR P. Power system stability and control[M]. 1 st. Mc Graw Hill, Inc. , 1994. [7] 赵嘉兴, 高伟, 上官明霞, 等. 风电参与电力系统调频综述[J]. 电力系统保护与控制, 2017, 45(21): 157–169 ZHAO Jiaxing, GAO Wei, SHANGGUAN Mingxia, et al. Review on frequency regulation technology of power grid by wind farm[J]. Power System Protection and Control, 2017, 45(21): 157–169 [8] EON Netz GmbH. Grid code - high and extra high voltage [DB/EB]. 2006-06-12. [9] Nordel. Nordic grid code 2007 (Nordic collection of rules)[DB/EB]. 2004. [10] Eskom System Operations and Planning Division. Grid code requirements for wind energy facilities connected to distribution or transmission system in south Africa (version4.4) [DB/EB]. 2012-07. [11] National Grid (Great Britain). Grid code documents: connection conditions [DB/EB]. 2009-07. [12] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 风电场接入电力系统技术规定: GB/T 19963—2011[S]. 北京: 中国标准出版社, 2012. [13] CLARK K, MILLER W, SANCHEZ-CASCA JJ. Modeling of GE wind turbine-generators for grid studies [R]. GE Energy, Apr. 2010. [14] ULLAH N R, THIRINGER T, KARLSSON D. Temporary primary frequency control support by variable speed wind turbines—potential and applications[J]. IEEE Transactions on Power Systems, 2008, 23(2): 601–612. [15] LALOR G, MULLANE A, O'MALLEY M. Frequency control and wind turbine technologies[J]. IEEE Transactions on Power Systems, 2005, 20(4): 1905–1913. [16] MORREN J, DE HAAN S W H, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power Systems, 2006, 21(1): 433–434. [17] 曹张洁. 双馈感应风电机组参与系统一次调频的控制策略研究[D]. 成都: 西南交通大学, 2012. CAO Zhangjie. Study on control strategy of DFIG wind turbine for the participation of system primary frequency regulation[D]. Chengdu: Southwest Jiaotong University, 2012. [18] TARNOWSKI G C, KJAR P C, SORENSEN P E, et al. Variable speed wind turbines capability for temporary over-production[C]//2009 IEEE Power & Energy Society General Meeting. Calgary, AB, Canada. IEEE, 2009: 1–7. [19] 刘彬彬, 杨健维, 廖凯, 等. 基于转子动能控制的双馈风电机组频率控制改进方案[J]. 电力系统自动化, 2016, 40(16): 17–22 LIU Binbin, YANG Jianwei, LIAO Kai, et al. Improved frequency control strategy for DFIG-based wind turbines based on rotor kinetic energy control[J]. Automation of Electric Power Systems, 2016, 40(16): 17–22 [20] BECK H P, HESSE R. Virtual synchronous machine[C]//2007 9 th International Conference on Electrical Power Quality and Utilisation. Barcelona, Spain. IEEE, 2007: 1–6. [21] 吕志鹏, 盛万兴, 刘海涛, 等. 虚拟同步机技术在电力系统中的应用与挑战[J]. 中国电机工程学报, 2017, 37(2): 349–360 Lü Zhipeng, SHENG Wanxing, LIU Haitao, et al. Application and challenge of virtual synchronous machine technology in power system[J]. Proceedings of the CSEE, 2017, 37(2): 349–360 [22] 黄林彬, 辛焕海, 黄伟, 等. 含虚拟惯量的电力系统频率响应特性定量分析方法[J]. 电力系统自动化, 2018, 42(8): 31–38 HUANG Linbin, XIN Huanhai, HUANG Wei, et al. Quantified analysis method of frequency response characteristics for power systems with virtual inertia[J]. Automation of Electric Power Systems, 2018, 42(8): 31–38 [23] 杨慧彪, 贾祺, 项丽, 等. 双级式光伏发电虚拟惯量控制策略[J]. 电力系统自动化, 2019, 43(10): 87–94 YANG Huibiao, JIA Qi, XIANG Li, et al. Virtual inertia control strategies for double-stage photovoltaic power generation[J]. Automation of Electric Power Systems, 2019, 43(10): 87–94 [24] 贾祺, 严干贵, 张善峰, 等. 多光伏发电参与电网频率调节的动态协调机理[J]. 电力系统自动化, 2019, 43(24): 59–66 JIA Qi, YAN Gangui, ZHANG Shanfeng, et al. Dynamic coordination mechanism of grid frequency regulation with multiple photovoltaic generation units[J]. Automation of Electric Power Systems, 2019, 43(24): 59–66 [25] 严干贵, 周志强, 穆钢. 双馈感应风电机组仿真建模及实证研究[J]. 电力电子, 2009(2): 21–25 YAN Gangui, ZHOU Zhiqiang, MU Gang. Modeling and validation of doubly-fed induction generator[J]. Power Electronics, 2009(2): 21–25 [26] HE W, YUAN X M, HU J B. Inertia provision and estimation of PLL-based DFIG wind turbines[J]. IEEE Transactions on Power Systems, 2017, 32(1): 510–521.
|