中国电力 ›› 2022, Vol. 55 ›› Issue (1): 2-12,83.DOI: 10.11930/j.issn.1004-9649.202105017
• 含大规模储能的高比例新能源电力系统协调规划与优化调度技术专栏 • 上一篇 下一篇
古宸嘉, 王建学, 李清涛, 张耀
收稿日期:
2021-05-07
修回日期:
2021-09-08
出版日期:
2022-01-28
发布日期:
2022-01-20
作者简介:
古宸嘉(1995-),男,博士研究生,从事储能配置运行及含储能的能源系统规划等研究,E-mail:gcj0629@stu.xjtu.edu.cn;王建学(1976-),男,通信作者,教授,从事新能源电力系统规划和运行等研究,E-mail:jxwang@mail.xjtu.edu.cn;李清涛(1994-),男,博士研究生,从事面向高比例新能源接入的电源投资优化方法等研究,E-mail:liqingtao0228@stu.xjtu.edu.cn;张耀(1988-),男,副教授,从事可再生能源预测及并网消纳与电力系统规划等研究,E-mail:yaozhang_ee@xjtu.edu.cn
基金资助:
GU Chenjia, WANG Jianxue, LI Qingtao, ZHANG Yao
Received:
2021-05-07
Revised:
2021-09-08
Online:
2022-01-28
Published:
2022-01-20
Supported by:
摘要: 随着新能源的大规模集中式并网,新能源的消纳难题愈发突出。作为高比例可再生能源电力系统中的重要组成部分和关键支撑技术,储能的规模化应用有利于提升系统的灵活性、经济性及安全性。然而,当前综述多是侧重于对储能技术归纳总结,很少对储能规划方法,特别是大规模储能在源-网侧配置方法进行全面的梳理。因此,首先对大规模储能纳入电力系统规划后整体影响进行分析,总结归纳出储能在电力系统中的应用场景,并分析储能的引入对规划问题建模的影响;然后,分别从大规模储能源侧/网侧规划以及考虑大规模储能的源网协调规划两个方面展开论述;最后,探讨当前大规模储能规划的重点问题,并对其前景做出展望。
古宸嘉, 王建学, 李清涛, 张耀. 新能源集中并网下大规模集中式储能规划研究述评[J]. 中国电力, 2022, 55(1): 2-12,83.
GU Chenjia, WANG Jianxue, LI Qingtao, ZHANG Yao. Review on Large-Scale Centralized Energy Storage Planning under Centralized Grid Integration of Renewable Energy[J]. Electric Power, 2022, 55(1): 2-12,83.
[1] MURRAY B C, BISTLINE J, CREASON J, et al. The EMF 32 study on technology and climate policy strategies for greenhouse gas reductions in the US electric power sector: an overview[J]. Energy Economics, 2018, 73: 286–289. [2] SINSEL S R, RIEMKE R L, HOFFMANN V H. Challenges and solution technologies for the integration of variable renewable energy sources—a review[J]. Renewable Energy, 2020, 145: 2271–2285. [3] DEHGHANI-SANIJ A R, THARUMALINGAM E, DUSSEAULT M B, et al. Study of energy storage systems and environmental challenges of batteries[J]. Renewable and Sustainable Energy Reviews, 2019, 104: 192–208. [4] LIU J Y, ZHANG L. Strategy design of hybrid energy storage system for smoothing wind power fluctuations[J]. Energies, 2016, 9(12): 991. [5] 许守平, 李相俊, 惠东. 大规模储能系统发展现状及示范应用综述[J]. 电网与清洁能源, 2013, 29(8): 94–100, 108 XU Shouping, LI Xiangjun, HUI Dong. A survey of the development and demonstration application of large-scale energy storage[J]. Power System and Clean Energy, 2013, 29(8): 94–100, 108 [6] 李建林, 马会萌, 袁晓冬, 等. 规模化分布式储能的关键应用技术研究综述[J]. 电网技术, 2017, 41(10): 3365–3375 LI Jianlin, MA Huimeng, YUAN Xiaodong, et al. Overview on key applied technologies of large-scale distributed energy storage[J]. Power System Technology, 2017, 41(10): 3365–3375 [7] GU C J, WANG J X, YANG Q, et al. Assessing operational benefits of large-scale energy storage in power system: Comprehensive framework, quantitative analysis, and decoupling method[J]. International Journal of Energy Research, 2021, 45(7): 10191–10207. [8] 孙伟卿, 裴亮, 向威, 等. 电力系统中储能的系统价值评估方法[J]. 电力系统自动化, 2019, 43(8): 47–55 SUN Weiqing, PEI Liang, XIANG Wei, et al. Evaluation method of system value for energy storage in power system[J]. Automation of Electric Power Systems, 2019, 43(8): 47–55 [9] LI J H, FU Y N, XING Z T, et al. Coordination scheduling model of multi-type flexible load for increasing wind power utilization[J]. IEEE Access, 2019, 7: 105840–105850. [10] LOBATO E, SIGRIST L, ROUCO L. Use of energy storage systems for peak shaving in the Spanish Canary Islands[C]//2013 IEEE Power & Energy Society General Meeting. Vancouver, BC, Canada. IEEE, 2013: 1-5. [11] 徐国栋, 程浩忠, 马紫峰, 等. 用于平滑风电出力的储能系统运行与配置综述[J]. 电网技术, 2017, 41(11): 3470–3479 XU Guodong, CHENG Haozhong, MA Zifeng, et al. An overview of operation and configuration of energy storage systems for smoothing wind power outputs[J]. Power System Technology, 2017, 41(11): 3470–3479 [12] 陈刚, 袁越, 傅质馨. 储能电池平抑光伏发电波动的应用[J]. 电力系统及其自动化学报, 2014, 26(2): 27–31, 49 CHEN Gang, YUAN Yue, FU Zhixin. Application of storage battery to restrain the photovoltaic power fluctuation[J]. Proceedings of the CSU-EPSA, 2014, 26(2): 27–31, 49 [13] DÍAZ-GONZÁLEZ F, SUMPER A, GOMIS-BELLMUNT O, et al. Energy management of flywheel-based energy storage device for wind power smoothing[J]. Applied Energy, 2013, 110: 207–219. [14] GO R S, MUNOZ F D, WATSON J P. Assessing the economic value of co-optimized grid-scale energy storage investments in supporting high renewable portfolio standards[J]. Applied Energy, 2016, 183: 902–913. [15] 车勇, 彭超锋, 袁铁江, 等. 计及储能的风电平衡区域电网优化划分方法[J]. 电网技术, 2017, 41(3): 775–781 CHE Yong, PENG Chaofeng, YUAN Tiejiang, et al. An optimized partitioning method balancing wind power in local power grid considering energy storage system[J]. Power System Technology, 2017, 41(3): 775–781 [16] HEYMANS C, WALKER S B, YOUNG S B, et al. Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling[J]. Energy Policy, 2014, 71: 22–30. [17] LI Y H, WANG J X, GU C J, et al. Investment optimization of grid-scale energy storage for supporting different wind power utilization levels[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(6): 1721–1734. [18] DURSUN B, ALBOYACI B. The contribution of wind-hydro pumped storage systems in meeting Turkey's electric energy demand[J]. Renewable and Sustainable Energy Reviews, 2010, 14(7): 1979–1988. [19] HUANG Q S, XU Y J, COURCOUBETIS C. Financial incentives for joint storage planning and operation in energy and regulation markets[J]. IEEE Transactions on Power Systems, 2019, 34(5): 3326–3339. [20] GUERRERO-MESTRE V, DVORKIN Y, FERNÁNDEZ-BLANCO R, et al. Incorporating energy storage into probabilistic security-constrained unit commitment[J]. IET Generation, Transmission & Distribution, 2018, 12(18): 4206–4215. [21] OBAID Z A, CIPCIGAN L M, MUHSSIN M T, et al. Control of a population of battery energy storage systems for frequency response[J]. International Journal of Electrical Power & Energy Systems, 2020, 115: 105463. [22] 梁琛, 王鹏, 韩肖清, 等. 计及系统动态可靠性评估的光伏电站储能经济配置[J]. 电网技术, 2017, 41(8): 2639–2646 LIANG Chen, WANG Peng, HAN Xiaoqing, et al. Economic selection of energy storage system for PV station considering dynamic reliability evaluation[J]. Power System Technology, 2017, 41(8): 2639–2646 [23] ZHAO H Y, HONG M G, LIN W, et al. Voltage and frequency regulation of microgrid with battery energy storage systems[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 414–424. [24] 李翠萍, 张世宁, 李军徽, 等. 风储系统作为黑启动电源的容量配置策略[J]. 电力系统保护与控制, 2021, 49(3): 88–95 LI Cuiping, ZHANG Shining, LI Junhui, et al. Capacity configuration strategy of a wind power and energy storage system as a black-start source[J]. Power System Protection and Control, 2021, 49(3): 88–95 [25] PAUL A, AYYAPPAN A, HARIHARAN R. Adaptive system on battery storage for load pickup in power system restoration[J]. International Journal of Applied Engineering Research, 2015, 2015(10): 26226–26229. [26] 谢石骁, 杨莉, 李丽娜. 基于机会约束规划的混合储能优化配置方法[J]. 电网技术, 2012, 36(5): 79–84 XIE Shixiao, YANG Li, LI Lina. A chance constrained programming based optimal configuration method of hybrid energy storage system[J]. Power System Technology, 2012, 36(5): 79–84 [27] ZHANG B, DEHGHANIAN P, KEZUNOVIC M. Optimal allocation of PV generation and battery storage for enhanced resilience[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 535–545. [28] AWAD A S A, EL-FOULY T H M, SALAMA M M A. Optimal ESS allocation and load shedding for improving distribution system reliability[J]. IEEE Transactions on Smart Grid, 2014, 5(5): 2339–2349. [29] CHEN X Y, LV J, MCELROY M B, et al. Power system capacity expansion under higher penetration of renewables considering flexibility constraints and low carbon policies[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6240–6253. [30] 李昀昊, 王建学, 曹晓宇, 等. 面向风电场–储能–输电网联合规划的机会约束IGDT模型[J]. 电网技术, 2019, 43(10): 3715–3724 LI Yunhao, WANG Jianxue, CAO Xiaoyu, et al. A chance-constrained IGDT model for joint planning of wind farm, energy storage and transmission[J]. Power System Technology, 2019, 43(10): 3715–3724 [31] 孙冰莹, 杨水丽, 刘宗歧, 等. 辅助单台火电机组AGC的电池储能系统双层优化配置方法[J]. 电力系统自动化, 2019, 43(8): 69–76, 157 SUN Bingying, YANG Shuili, LIU Zongqi, et al. Optimal bi-level configuration method for battery energy storage system assisting AGC of single thermal power unit[J]. Automation of Electric Power Systems, 2019, 43(8): 69–76, 157 [32] 王再闯, 袁铁江, 李永东, 等. 基于储能电站提高风电消纳能力的电源规划研究[J]. 可再生能源, 2014, 32(7): 954–960 WANG Zaichuang, YUAN Tiejiang, LI Yongdong, et al. Power planning based on energy storage station to improve accommodation of wind power[J]. Renewable Energy Resources, 2014, 32(7): 954–960 [33] 董凯, 江辉, 黄泽荣, 等. 运用成本效益分析的风/柴/储能系统规划方法[J]. 电力系统及其自动化学报, 2010, 22(3): 67–72 DONG Kai, JIANG Hui, HUANG Zerong, et al. Planning method of wind-diesel-storage system using cost-benefit analysis[J]. Proceedings of the Chinese Society of Universities for Electric Power System and Its Automation, 2010, 22(3): 67–72 [34] 王磊, 冯斌, 王昭, 等. 计及电池储能寿命损耗的风光储电站储能优化配置[J]. 电力科学与工程, 2019, 35(5): 1–6 WANG Lei, FENG Bin, WANG Zhao, et al. Optimal configuration of energy-storage capacity for wind/photovoltaic/energy-storage station considering energy-storage life loss[J]. Electric Power Science and Engineering, 2019, 35(5): 1–6 [35] 刘永前, 梁超, 阎洁, 等. 风-光电站中储能系统混合最优配置及其经济性研究[J]. 中国电力, 2020, 53(12): 143–150 LIU Yongqian, LIANG Chao, YAN Jie, et al. Optimal configuration and economic study of hybrid energy storage system in wind and solar power plants[J]. Electric Power, 2020, 53(12): 143–150 [36] 李凯, 康世崴, 闫方, 等. 基于风光火储的多能互补新能源基地规划分析[J]. 山东电力技术, 2020, 47(10): 17–21, 35 LI Kai, KANG Shiwei, YAN Fang, et al. Planning analysis of new energy base based on wind-photovoltaic-thermal-energy storage multi-energy complementary[J]. Shandong Electric Power, 2020, 47(10): 17–21, 35 [37] 刘树桦, 王建学, 李清涛, 等. 多能互补复合电站的优化配置及其在系统电源规划中的应用[J]. 电网技术, 2021, 45(8): 3006–3015 LIU Shuhua, WANG Jianxue, LI Qingtao, et al. Optimal configuration of multi-energy complementary composite power plant and its application in generation expansion planning[J]. Power System Technology, 2021, 45(8): 3006–3015 [38] 张熙, 张峰, 巩乃奇, 等. 基于荷电状态动态调整的储能电站容量规划[J]. 电力自动化设备, 2015, 35(11): 20–25 ZHANG Xi, ZHANG Feng, GONG Naiqi, et al. BESS capacity planning based on dynamic SOC adjustment[J]. Electric Power Automation Equipment, 2015, 35(11): 20–25 [39] BERRADA A, LOUDIYI K. Operation, sizing, and economic evaluation of storage for solar and wind power plants[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 1117–1129. [40] MASAUD T M, OYEBANJO O, SEN P K. Sizing of large-scale battery storage for off-grid wind power plant considering a flexible wind supply–demand balance[J]. IET Renewable Power Generation, 2017, 11(13): 1625–1632. [41] BELDERBOS A, VIRAG A, D’HAESELEER W, et al. Considerations on the need for electricity storage requirements: Power versus energy[J]. Energy Conversion and Management, 2017, 143: 137–149. [42] JABR R A, DŽAFIĆ I, PAL B C. Robust optimization of storage investment on transmission networks[J]. IEEE Transactions on Power Systems, 2015, 30(1): 531–539. [43] HAN X N, LIAO S W, AI X M, et al. Determining the minimal power capacity of energy storage to accommodate renewable generation[J]. Energies, 2017, 10(4): 468. [44] HEMMATI R, SABOORI H, JIRDEHI M A. Stochastic planning and scheduling of energy storage systems for congestion management in electric power systems including renewable energy resources[J]. Energy, 2017, 133: 380–387. [45] 桑丙玉, 姚良忠, 李明杨, 等. 基于二阶锥规划的含大规模风电接入的直流电网储能配置[J]. 电力系统保护与控制, 2020, 48(5): 86–94 SANG Bingyu, YAO Liangzhong, LI Mingyang, et al. Research on energy storage system planning of DC grid with large-scale wind power integration[J]. Power System Protection and Control, 2020, 48(5): 86–94 [46] XIONG P, SINGH C. Optimal planning of storage in power systems integrated with wind power generation[J]. IEEE Transactions on Sustainable Energy, 2016, 7(1): 232–240. [47] FERNÁNDEZ-BLANCO R, DVORKIN Y, XU B L, et al. Optimal energy storage siting and sizing: a WECC case study[J]. IEEE Transactions on Sustainable Energy, 2017, 8(2): 733–743. [48] WOGRIN S, GAYME D F. Optimizing storage siting, sizing, and technology portfolios in transmission-constrained networks[J]. IEEE Transactions on Power Systems, 2015, 30(6): 3304–3313. [49] 郑乐, 胡伟, 陆秋瑜, 等. 储能系统用于提高风电接入的规划和运行综合优化模型[J]. 中国电机工程学报, 2014, 34(16): 2533–2543 ZHENG Le, HU Wei, LU Qiuyu, et al. Research on planning and operation model for energy storage system to optimize wind power integration[J]. Proceedings of the CSEE, 2014, 34(16): 2533–2543 [50] PANDŽIĆ H, WANG Y S, QIU T, et al. Near-optimal method for siting and sizing of distributed storage in a transmission network[J]. IEEE Transactions on Power Systems, 2015, 30(5): 2288–2300. [51] GHOFRANI M, ARABALI A, ETEZADI-AMOLI M, et al. A framework for optimal placement of energy storage units within a power system with high wind penetration[J]. IEEE Transactions on Sustainable Energy, 2013, 4(2): 434–442. [52] GHOFRANI M, ARABALI A, ETEZADI-AMOLI M, et al. Energy storage application for performance enhancement of wind integration[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4803–4811. [53] WEN S L, LAN H, FU Q, et al. Economic allocation for energy storage system considering wind power distribution[J]. IEEE Transactions on Power Systems, 2015, 30(2): 644–652. [54] KORJANI S, MUREDDU M, FACCHINI A, et al. Aging cost optimization for planning and management of energy storage systems[J]. Energies, 2017, 10(11): 1916. [55] HOZOURI M A, ABBASPOUR A, FOTUHI-FIRUZABAD M, et al. On the use of pumped storage for wind energy maximization in transmission-constrained power systems[J]. IEEE Transactions on Power Systems, 2015, 30(2): 1017–1025. [56] QIU T, XU B L, WANG Y S, et al. Stochastic multistage coplanning of transmission expansion and energy storage[J]. IEEE Transactions on Power Systems, 2017, 32(1): 643–651. [57] DEHGHAN S, AMJADY N. Robust transmission and energy storage expansion planning in wind farm-integrated power systems considering transmission switching[J]. IEEE Transactions on Sustainable Energy, 2016, 7(2): 765–774. [58] 郭铭群, 赵鹏飞, 孙珂, 等. N-K重故障下输储协同规划模型及算法[J]. 电网技术, 2020, 44(11): 4218–4226 GUO Mingqun, ZHAO Pengfei, SUN Ke, et al. N-K contingencies considered joint planning of energy storage and transmission expansion problem: model and algorithm[J]. Power System Technology, 2020, 44(11): 4218–4226 [59] 郑静, 文福拴, 李力, 等. 计及风电场和储能系统联合运行的输电系统扩展规划[J]. 电力系统自动化, 2013, 37(1): 135–142 ZHENG Jing, WEN Fushuan, LI Li, et al. Transmission system expansion planning considering combined operation of wind farms and energy storage systems[J]. Automation of Electric Power Systems, 2013, 37(1): 135–142 [60] 杨修宇, 穆钢, 柴国峰, 等. 考虑灵活性供需平衡的源-储-网一体化规划方法[J]. 电网技术, 2020, 44(9): 3238–3246 YANG Xiuyu, MU Gang, CHAI Guofeng, et al. Source-storage-grid integrated planning considering flexible supply-demand balance[J]. Power System Technology, 2020, 44(9): 3238–3246 [61] LI Z, WANG C F, LI B W, et al. Probability-interval-based optimal planning of integrated energy system with uncertain wind power[J]. IEEE Transactions on Industry Applications, 2020, 56(1): 4–13. [62] ZHAO B N, CONEJO A J, SIOSHANSI R. Using electrical energy storage to mitigate natural gas-supply shortages[J]. IEEE Transactions on Power Systems, 2018, 33(6): 7076–7086. [63] 薛晨, 任景, 马晓伟, 等. 面向高比例新能源消纳的西北调峰辅助服务市场机制及实践[J]. 中国电力, 2021, 54(11): 19–28 XUE Chen, REN Jing, MA Xiaowei, et al. Mechanism of peak regulation auxiliary electricity market in the presence of high-penetration renewable energy and its practice in northwest China[J]. Electric Power, 2021, 54(11): 19–28 [64] 胡静, 黄碧斌, 蒋莉萍, 等. 适应电力市场环境下的电化学储能应用及关键问题[J]. 中国电力, 2020, 53(1): 100–107 HU Jing, HUANG Bibin, JIANG Liping, et al. Application and major issues of electrochemical energy storage under the environment of power market[J]. Electric Power, 2020, 53(1): 100–107 [65] 王良缘, 江岳文, 王杰. 考虑参与多市场交易的电网侧储能优化配置[J]. 电网与清洁能源, 2020, 36(11): 30–38 WANG Liangyuan, JIANG Yuewen, WANG Jie. Optimization of grid-side energy storage considering multi-market transaction[J]. Power System and Clean Energy, 2020, 36(11): 30–38 |
[1] | 李咸善, 丁胜彪, 李飞, 李欣. 考虑水电调节费用补偿的风光水联盟优化调度策略[J]. 中国电力, 2024, 57(5): 26-38. |
[2] | 刘硕, 张梦晗, 于松泰, 向明旭, 杨知方. 计及跨区备用辅助服务互济的互联电网出清方法[J]. 中国电力, 2023, 56(9): 35-47. |
[3] | 许凌, 张希鹏, 曹益奇, 张丙金, 董成, 谭振飞. 考虑备用互济的省间现货电能与备用耦合出清模型[J]. 中国电力, 2023, 56(9): 48-56. |
[4] | 任景, 高敏, 程松, 张小东, 刘友波. 面向新能源不确定性的西北电力电量平衡机制[J]. 中国电力, 2023, 56(9): 66-78. |
[5] | 齐步洋, 卓振宇, 杜尔顺, 张宁, 康重庆. 考虑储能装置寿命的电网侧规模化电化学储能规划与评估方法[J]. 中国电力, 2023, 56(8): 1-9,47. |
[6] | 彭生江, 杨德州, 孙传帅, 袁铁江, 刘永成. 基于氢负荷需求的氢能系统容量规划[J]. 中国电力, 2023, 56(7): 13-20,32. |
[7] | 魏震波, 李银江, 张雯雯, 杨超. 基于改进Myerson值法的云储能双层优化运营模型[J]. 中国电力, 2023, 56(7): 198-206. |
[8] | 刘联涛, 刘飞, 吉平, 林伟芳, 张祥成, 田旭, 高菲. 储能参与新能源消纳的优化控制策略[J]. 中国电力, 2023, 56(3): 137-143. |
[9] | 李力, 黄欣, 徐天元, 陈玥, 陆秋瑜, 杨银国, 刘洋, 朱誉, 李更丰, 邵成成. 面向输电网弹性提升的灵活控制装置配置规划[J]. 中国电力, 2023, 56(12): 113-126. |
[10] | 陈岩, 靳伟, 王文宾, 李会彬, 韩胜峰, 贾凯. 兼顾区域自律和消纳品质的配电网新能源消纳能力分析方法[J]. 中国电力, 2021, 54(9): 143-155. |
[11] | 胡娱欧, 高志远, 张晶, 张涛. 市场化环境下优先发电实施方案[J]. 中国电力, 2021, 54(9): 102-108. |
[12] | 黄碧斌, 胡静, 蒋莉萍, 李琼慧, 冯凯辉, 元博. 中国电网侧储能在典型场景下的应用价值评估[J]. 中国电力, 2021, 54(7): 158-165. |
[13] | 朱罡, 李延和, 张真, 徐有蕊. 省级电网全清洁能源供电运行控制技术与应用[J]. 中国电力, 2021, 54(5): 195-205. |
[14] | 薛晨, 任景, 马晓伟, 崔伟, 刘友波, 王潇笛. 面向高比例新能源消纳的西北调峰辅助服务市场机制及实践[J]. 中国电力, 2021, 54(11): 19-28. |
[15] | 王跃峰. 德国新能源发电发展和运行研究[J]. 中国电力, 2020, 53(5): 112-121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||