中国电力 ›› 2020, Vol. 53 ›› Issue (6): 72-80.DOI: 10.11930/j.issn.1004-9649.201910016

• 电网 • 上一篇    下一篇

基于时间序列的电能表月故障数预测方法

李媛1, 郑安刚1, 谭煌1, 陈昊1, 程淑亚2, 蔡慧2, 王黎欣3   

  1. 1. 中国电力科学研究院有限公司,北京 100192;
    2. 中国计量大学 机电工程学院,浙江 杭州 310018;
    3. 国网浙江省电力有限公司电力科学研究院,浙江 杭州 310014
  • 收稿日期:2019-10-09 修回日期:2020-02-22 发布日期:2020-06-05
  • 作者简介:李媛(1991-),女,硕士,助理工程师,从事电测量技术研究,E-mail:liyuan3@epri.sgcc.com.cn;郑安刚(1976-),男,硕士,高级工程师(教授级),从事电测量技术研究,E-mail:zhengangang@epri.sgcc.com.cn;谭煌(1991-),男,硕士,工程师,从事计量及用电信息采集技术研究,E-mail:tanhuang@epri.sgcc.com.cn;陈昊(1984-),男,硕士,高级工程师,从事电测量技术研究,E-mail:chenhao2010@epri.sgcc.com.cn;程淑亚(1995-),女,硕士研究生,从事电参数检测与控制和电力大数据分析研究,E-mail:1820760593@qq.com;蔡慧(1980-),男,博士,副教授,从事电参数检测与控制和电力大数据分析研究,E-mail:caihui@cjlu.edu.cn;王黎欣(1991-),女,硕士,工程师,从事电力计量技术研究,E-mail:wlx417@163.com
  • 基金资助:
    国家电网公司科技项目(配用电设备健康状态在线监测、高效运维及智能评价关键技术研究及应用,JL71-18-019)

A New Method for Predicting the Monthly Fault Number of Watt-hour Meters Based on Time Series

LI Yuan1, ZHENG Angang1, TAN Huang1, CHEN Hao1, CHENG Shuya2, CAI Hui2, WANG Lixin3   

  1. 1. China Electric Power Research Institute Co., Ltd., Beijing 100192, China;
    2. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China;
    3. State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China
  • Received:2019-10-09 Revised:2020-02-22 Published:2020-06-05
  • Supported by:
    This work is supported by Science and Technology Project of State Grid Corporation of China (Research and Application of Key Technologies for Online Health Monitoring, Efficient Operation and Maintenance and Intelligent Evaluation of Distributed Electrical Equipment, No. JL71-18-019)

摘要: 针对当前国网信息系统中电能表故障预测模型比较简单、不够全面和没有具体电能表月故障数预测模型的问题,基于时间序列建立综合时间序列预测模型,实现对批次电能表月故障数较准确的预测。首先计算电能表月故障数的移动平均序列,去除微小波动;然后根据序列是否有明显长期趋势,选用ARIMA模型或指数平滑模型对移动平均序列进行预测;最后采用反向移动平均,实现对整个批次电能表月故障数准确的短期预测。通过与BP神经网络模型的预测进行对比,验证了综合时间序列模型的实用性和准确性。在此基础上,建立电能表月故障总数预测模型。计量资产管理部门可以根据所提方法对故障电能表数进行预测,根据预测结果进行备货,提高管理部门的资源配置合理性和工作效率。

关键词: 电能表, 月故障数, 时间序列, BP神经网络, 电能表合理分配

Abstract: The existing watt-hour meter fault prediction models in the State Grid information system are relatively simple and insufficient, and there is no specific model for predicting the monthly fault number of watt-hour meters. Based on time series, an integrated time series prediction model is established for an accurate prediction of the monthly fault number of batch watt-hour meters. Firstly, the moving average sequence is calculated for the monthly fault number of watt-hour meters to remove small fluctuations. And then, the ARIMA model or exponential smoothing model is selected to predict the moving average sequence according to the long-term trend of the sequence. Finally, the reverse moving average is used to realize the accurate short-term prediction of the monthly fault number of the whole batch of watt-hour meters. By comparison with the BP neural network model, the practicability and accuracy of the proposed time series model is verified. On this basis, a monthly fault prediction model is established. The measurement asset management departments can use the proposed method to predict the number of faulted watt-hour meters, and prepare the stock according to the prediction results, consequently improving the rationality of resource allocation and work efficiency.

Key words: watt-hour meter, monthly fault number, time series, BP neural network, reasonable distribution of watt-hour meters