[1] 李梦宁, 张泽亚, 张知, 等. 基于GRAT算法的电能表故障概率决策树分析[J]. 电力大数据, 2017, 20(10): 7-10, 60 LI Mengning, ZHANG Zeya, ZHANG Zhi, et al. Analysis of decision tree for power meter fault probability based on GRAT algorithm[J]. Power Systems and Big Data, 2017, 20(10): 7-10, 60 [2] 张鹏飞, 瞿海妮, 肖其师, 等. 基于气象因素和时间序列分析的配电网故障数量预测[J]. 陕西电力, 2016, 44(1): 68-72 ZHANG Pengfei, QU Haini, XIAO Qishi, et al. Distribution network faults prediction based on meteorological factors and time series analysis[J]. Shaanxi Electric Power, 2016, 44(1): 68-72 [3] 李生彪. 基于ARMA模型的故障率时间序列预测[J]. 自动化与仪器仪表, 2015(12): 218-219 LI Shengbiao. Fault rate time series prediction based on ARMA model[J]. Automation & Instrumentation, 2015(12): 218-219 [4] 丁明, 张立军, 吴义纯. 基于时间序列分析的风电场风速预测模型[J]. 电力自动化设备, 2005, 25(8): 32-34 DING Ming, ZHANG Lijun, WU Yichun. Wind speed forecast model for wind farms based on time series analysis[J]. Electric Power Automation Equipment, 2005, 25(8): 32-34 [5] 贺宁. 智能电表故障大数据分析探究[J]. 中小企业管理与科技(上旬刊), 2016(7): 142-14 [6] 潘迪夫, 刘辉, 李燕飞. 基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J]. 电网技术, 2008, 32(7): 82-86 PAN Difu, LIU Hui, LI Yanfei. A wind speed forecasting optimization model for wind farms based on time series analysis and Kalman filter algorithm[J]. Power System Technology, 2008, 32(7): 82-86 [7] 张立栋, 李继影, 吴颖, 等. 不同时间分辨率的风功率时间序列ARIMA模型预测[J]. 中国电力, 2016, 49(6): 176-180 ZHANG Lidong, LI Jiying, WU Ying, et al. ARIMA model forecast for wind power time series with different temporal resolutions[J]. Electric Power, 2016, 49(6): 176-180 [8] 贡文伟, 黄晶. 基于灰色理论与指数平滑法的需求预测综合模型[J]. 统计与决策, 2017(1): 72-76 GONG Weiwen, HUANG Jing. A demand forecast model based on the gray theory and exponential smoothing method[J]. Statistics and Decision, 2017(1): 72-76 [9] 彭凯, 邓建明, 张运林, 等. 1957~2015年我国春季短期温度波动规律[J]. 气候与环境研究, 2019, 24(1): 125-134 PENG Kai, DENG Jianming, ZHANG Yunlin, et al. Short-term temperature fluctuation in the spring in China during 1957-2015[J]. Climatic and Environmental Research, 2019, 24(1): 125-134 [10] 薛阳, 杜新纲, 张蓬鹤, 等. 电能表故障与地域气候、行业负荷关系研究[J]. 中国电力, 2017, 50(8): 98-105 XUE Yang, DU Xingang, ZHANG Penghe, et al. Research on the relationship between electric energy meter fault and regional climate & load in different industries[J]. Electric Power, 2017, 50(8): 98-105 [11] 韦跃. 基于长期监测数据的混凝土梁桥健康状态评判方法研究[D]. 重庆: 重庆交通大学, 2014. WEI Yue. Assessment method research to concrete beam bridges health conditions based on long-term monitoring data[D]. Chongqing: Chongqing Jiaotong University, 2014. [12] 杨平, 彭道刚, 韩璞, 等. 神经网络预测控制算法及其应用[J]. 控制工程, 2003, 10(4): 349-351 YANG Ping, PENG Daogang, HAN Pu, et al. Neural networks predictive control algorithm and its application study[J]. Control Engineering of China, 2003, 10(4): 349-351 [13] 王文剑. BP神经网络模型的优化[J]. 计算机工程与设计, 2000, 21(6): 8-10 WANG Wenjian. The optimization of BP neural networks[J]. Computer Engineering and Design, 2000, 21(6): 8-10 [14] 赵忠明, 施天威, 董伟, 等. 灰色关联分析与BP神经网络的概率积分法参数预测[J]. 测绘科学, 2017, 42(7): 36-40, 51 ZHAO Zhongming, SHI Tianwei, DONG Wei, et al. The prediction of probability-integral method parameters based on grey relational analysis and BP neural network[J]. Science of Surveying and Mapping, 2017, 42(7): 36-40, 51 [15] QI X N, BAO H B, GAO J D. Exponential input-to-state stability of quaternion-valued neural network with time delay[J]. Applied Mathematics and Computation, 2019, 358: 382-393. [16] 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望[J]. 计算机学报, 2016, 39(8): 1697-1716 JIAO Licheng, YANG Shuyuan, LIU Fang, et al. Seventy years beyond neural networks: retrospect and prospect[J]. Chinese Journal of Computers, 2016, 39(8): 1697-1716 [17] 孙一睿, 李钰鑫, 陈磊, 等. 基于遗传算法优化神经网络的SCR催化剂失效预测[J]. 中国电机工程学报, 2016, 36(增刊1): 112-120 SUN Yirui, LI Yuxin, CHEN Lei, et al. Deactivation forecasting of SCR catalyst based on GABP neural networks[J]. Proceedings of the CSEE, 2016, 36(S1): 112-120 [18] 胡鹏飞, 谢诞梅, 熊扬恒. 一种基于白箱模型的人工神经网络参数辨识算法[J]. 中国电机工程学报, 2016, 36(10): 2734-2741 HU Pengfei, XIE Danmei, XIONG Yangheng. An algorithm of parameter identification for wright-box models based on artificial neuron network[J]. Proceedings of the CSEE, 2016, 36(10): 2734-2741 [19] 颜廷鑫, 刘光晔, 谢冬冬. 基于神经网络的法向阻抗模裕度快速计算方法[J]. 电网技术, 2016, 40(8): 2389-2395 YAN Tingxin, LIU Guangye, XIE Dongdong. Fast estimation method for normal impedance modulus margin based on neural network[J]. Power System Technology, 2016, 40(8): 2389-2395 [20] 高正中, 龚群英, 刘隆吉, 等. 基于BP网络算法优化粗糙-Petri网的电网故障诊断[J]. 中国电力, 2016, 49(8): 12-16, 30 GAO Zhengzhong, GONG Qunying, LIU Longji, et al. Power system fault diagnosis based on rough set and petri network optimized by BP algorithm[J]. Electric Power, 2016, 49(8): 12-16, 30 [21] 闫龙川, 张晓亮, 杨猛, 等. 基于BP神经网络的信息系统故障自动恢复技术[J]. 中国电力, 2017, 50(8): 146-149, 184 YAN Longchuan, ZHANG Xiaoliang, YANG Meng, et al. Research and application of information system fault automatic recovery technology based on BP neural network[J]. Electric Power, 2017, 50(8): 146-149, 184 [22] 陈忱, 胡薇薇, 孙宇锋, 等. 基于BP-AdaBoost的电子式电能表故障检测方法[J]. 电光与控制, 2013, 20(4): 72-76 CHEN Chen, HU Weiwei, SUN Yufeng, et al. Failure supervising method for electricity meter based on BP-AdaBoost algorithm[J]. Electronics Optics & Control, 2013, 20(4): 72-76 |