[1] LI W. Risk assessment of power systems:models, methods, and applicaitons[M]. Hoboken, NJ, USA:Wiley-IEEE, 2014. [2] YOUWEI J, KE M, ZHAO X. N-k induced cascading contingency screening[J]. IEEE Transactions on Power Systems, 2015, 30(5):2824-2825. [3] SING P W, CHEN A, CHIH W L, et al. Efficient splitting simulation for blackout analysis[J]. IEEE Transactions on Power Systems, 2015, 30(4):1775-1783. [4] 徐林, 黄晓莉, 杜忠明, 等. 适应新能源发展的电力规划方法研究[J]. 中国电力, 2017, 50(9):18-24 XU Lin, HUANG Xiaoli, DU Zhongming, et al. Study on power system planning method adapting to new energy development[J]. Electric Power, 2017, 50(9):18-24 [5] 娄素华, 王亚娟, 卢斯煜, 等. 市场环境下考虑风险成本的启发式输电网规划[J]. 中国电力, 2015, 48(7):76-81 LOU Suhua, WANG Yajuan, LU Siyu, et al. Research on transmission network planning model based on risk cost under market environment[J]. Electric Power, 2015, 48(7):76-81 [6] WANG J, ZHONG H, XIA Q, et al. Transmission network expansion planning with embedded constraints of short circuit currents and N-1 security[J]. Journal of Modern Power Systems and Clean Energy, 2015, 3(3):312-320. [7] DAVIS C M, OVERBYE T J. Multiple element contingency screening[J]. IEEE Transactions on Power Systems, 2011, 26(3):1294-1301. [8] YANG X, LIU C, WANG J. Large-scale branch contingency analysis through master/slave parallel computing[J]. Journal of Modern Power Systems and Clean Energy, 2013, 1(2):159-166. [9] 王毅, 张轩, 董毅峰, 等. 计及自动装置模拟的连锁过载跳闸静态安全分析方法[J]. 中国电力, 2014, 47(6):38-42 WANG Yi, ZHANG Xuan, DONG Yifeng, et al. A static security analysis method for cascading overload trips considering automatic device simulation[J]. Electric Power, 2014, 47(6):38-42 [10] 於益军, 刘俊, 冯树海, 等. 基于开断灵敏度的静态安全分析辅助决策[J]. 中国电力, 2013, 46(3):53-58 YU Yijun, LIU Jun, FENG Shuhai, et al. Assistant decision-making for static security analysis based on outage sensitivity[J]. Electric Power, 2013, 46(3):53-58 [11] PENG W, HAOZHONG C, JIE X. The interval minimum load cutting problem in the process of transmission network expansion planning considering uncertainty in demand[J]. IEEE Transactions on Power Systems, 2008, 23(3):1497-1506. [12] DONDE V, LOPEZ V, LESIEUTRE B, et al. Severe multiple contingency screening in electric power systems[J]. IEEE Transactions on Power Systems, 2008, 23(2):406-417. [13] ARROYO J M. Bilevel programming applied to power system vulnerability analysis under multiple contingencies[J]. IET Generation, Transmission & Distribution, 2010, 4(2):178. [14] FLISCOUNAKIS S, PANCIATICI P, CAPITANESCU F, et al. Contingency ranking with respect to overloads in very large power systems taking into account uncertainty, preventive, and corrective actions[J]. IEEE Transactions on Power Systems, 2013, 28(4):4909-4917. [15] 武鹏, 程浩忠, 屈刚. 电网规划中区间最小切负荷量的计算方法[J]. 中国电机工程学报, 2008, 28(22):41-46 WU Peng, CHENG Haozhong, QU Gang. Algorithm to solve interval minimum load cutting problem for transmission planning[J]. Proceedings of the CSEE, 2008, 28(22):41-46 [16] 武鹏. 考虑不确定因素的输电网灵活规划方法研究[D]. 上海交通大学, 2009. [17] COLSON B, MARCOTTE P, SAVARD G. An overview of bilevel optimization[J]. Annals of Operations Research, 2007, 153(1):235-256. [18] JAMES T. MOORE J F B. The mixed integer linear bilevel programming problem[J]. Operations Research, 1990, 38(5):911-921. [19] BARINGO L, CONEJO A J. Transmission and wind power investment[J]. IEEE Transactions on Power Systems, 2012, 27(2):885-893. [20] JIN S, RYAN S M. A tri-level model of centralized transmission and decentralized generation expansion planning for an electricity market-part I[J]. IEEE Transactions on Power Systems, 2014, 29(1):132-141. [21] POZO D, SAUMA E E, CONTRERAS J. A three-level static MILP model for generation and transmission expansion planning[J]. IEEE Transactions on Power Systems, 2013, 28(1):202-210. [22] SUBCOMMITTEE P M. IEEE reliability test system[J]. IEEE Transactions on Power Apparatus and Systems, 1979, PAS-98(6):2047-2054. [23] 何天雨, 卫志农, 孙国强, 等. 基于网损等值负荷模型的改进直流最优潮流算法[J]. 电力系统自动化, 2016, 40(6):58-64 HE Tianyu, WEI Zhinong, SUN Guoqiang, et al. Modified direct current optimal power flow algorithm based on net loss equivalent load model[J]. Automation of Electric Power Systems, 2016, 40(6):58-64 |