中国电力 ›› 2019, Vol. 52 ›› Issue (6): 147-153.DOI: 10.11930/j.issn.1004-9649.201807006

• 信息与通信 • 上一篇    下一篇

光伏串列信道噪声特性研究与建模

孙凤杰, 赵晨凯   

  1. 华北电力大学 电气与电子工程学院, 北京 102206
  • 收稿日期:2018-07-04 修回日期:2018-12-03 出版日期:2019-06-05 发布日期:2019-07-02
  • 通讯作者: 赵晨凯(1995-),男,通信作者,硕士研究生,从事电力系统通信研究,E-mail:101756889@qq.com
  • 作者简介:孙凤杰(1964-),男,教授,从事通信与信息系统研究,E-mail:sfj@ncepu.edu.cn
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2016MS06);国网青海省电力公司科技项目(面向光伏发电站分布监测的载波无线融合通信关键技术研究,KH16010468)。

Research and Modeling on Noise Characteristics of Photovoltaic Serial Channel

SUN Fengjie, ZHAO Chenkai   

  1. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2018-07-04 Revised:2018-12-03 Online:2019-06-05 Published:2019-07-02
  • Supported by:
    This work is supported by Fundamental Research Funds for the Central Universities (No.2016MS06), the Science and Technology Project of State Grid Qinghai Electric Power Company (Research on Key Technologies of Convergence Communication by Carrier and Wireless for Distributed Monitoring of Photovoltaic Power Stations, No.KH16010468).

摘要: 为实现对每块光伏组件的工作状态进行监测,可运用以光伏组件串列为介质的载波通信技术实现,因此有必要掌握光伏串列的信道噪声特性。以某光伏电站实测的光伏串列信道噪声为对象,提出了一种粒子群优化BP神经网络的光伏串列信道噪声建模方法。实验与仿真结果表明:粒子群优化BP神经网络模型的预测输出和测试原噪声在功率谱密度及时域波形上有着一致的变化趋势,证明了该模型的有效性。相比较于小波神经网络和遗传算法优化的BP神经网络,粒子群优化的BP神经网络的预测均方根误差更小、精度更高。

关键词: 光伏组件, 噪声特性, BP神经网络, 小波神经网络, 粒子群算法, 遗传算法

Abstract: In order to monitor the working state of each PV module, which can be realized by the carrier communication technology that uses the photovoltaic series as media, it is necessary to master the channel noise characteristics of photovoltaic series. In this paper, based on the measured photovoltaic channel noise in a photovoltaic power plant, a particle swarm optimization BP neural network is proposed to model the channel noise in the photovoltaic serial channel. The experimental and simulation results show that the predicted output of the particle swarm optimization BP neural network model have a consistent variation trend with the tested original noise in power spectral density and time domain waveform, which proves the effectiveness of the proposed model. Compared with the wavelet neural network and BP neural network optimized by genetic algorithm, the BP neural network with particle swarm optimization has less RMS error and higher accuracy.

Key words: photovoltaic module, noise characteristics, BP neural network, wavelet neural network, particle swarm optimization, genetic algorithm

中图分类号: