中国电力 ›› 2018, Vol. 51 ›› Issue (3): 21-28.DOI: 10.11930/j.issn.1004-9649.201707172

• 发电 • 上一篇    下一篇

基于模型自适应汽轮机调节门流量特性优化研究及应用

雷志伟, 张兴, 陈涛, 陈胜利, 武海澄, 张剑   

  1. 中国大唐集团科学技术研究院有限公司华东分公司, 安徽 合肥 230031
  • 收稿日期:2017-07-31 修回日期:2017-12-08 出版日期:2018-03-05 发布日期:2018-03-12
  • 作者简介:雷志伟(1990—),男,福建建阳人,硕士,工程师,从事火力发电厂自动控制及先进控制技术研究,E-mail:469861646@qq.com。
  • 基金资助:
    中国大唐集团重大科技项目(KYY2016-3004)。

Optimization on Valve Flow Characteristics of Steam Turbine Based on Model Self-Adaptation and Its Application

LEI Zhiwei, ZHANG Xing, CHEN Tao, CHEN Shengli, WU Haicheng, ZHANG Jian   

  1. China Datang Corporation Science & Technical Institute Co., Ltd. East China Branch, Hefei 230031, China
  • Received:2017-07-31 Revised:2017-12-08 Online:2018-03-05 Published:2018-03-12
  • Supported by:
    This work is supported by Key Science and Technology Project of China Datang Corporation (KYY2016-3004).

摘要: 汽轮机调节门流量特性影响机组安全稳定运行和负荷调节性能。首先,针对采用喷嘴配汽方式的汽轮机调节门结构类型,通过模型自适应算法,建立顺序阀方式下的非线性调节门流量特性模型,实现调节门流量特性优化计算。其次,对该模型进行仿真研究,系统仿真结果表明,采用RBF神经网络结构的单阀流量特性仿真模型具有较高的模型精度,利用模型自适应优化算法可获得近似理想的线性度和最佳调节门重叠度。最后,将仿真结果应用在某660 MW机组上,试验结果表明,该方法不仅改善调节门流量特性线性度,而且降低调节门重叠度,改善AGC负荷响应性能,减少调节门晃动和机组节流损失。

关键词: 汽轮机, 调节门, 流量特性, 模型自适应法, RBF神经网络

Abstract: The valve flow characteristics of steam turbines have significant impacts on the system security and operation stability as well as load regulation performance of the units. In this paper, regarding the valve structure in nozzle governing, the non-linear valve flow characteristic model is first built for sequence valve control by taking advantage of model adaptive algorithm to conduct flow characteristic linearization based on optimization arithmetic. Second, the simulation study is carried out on this model. The results indicate that the single flow characteristic simulation model adopting RBF network has high model precision. By virtue of the model adaptive optimization algorithm approximate ideal linearity and optimum valve overlap can be obtained. Finally, the simulation result is applied to a 660-MW unit. The test result shows that the method can not only improve the linearity of the valve flow characteristics, but also lower the valve overlap, improve the AGC load response performance and alleviate the valve shaking issue and reduce the throttling losses of the unit.

Key words: steam turbine, governing valve, flow characteristic, model adaptive algorithm, RBF network

中图分类号: