[1] 黄瓯, 彭泽瑛. 700 ℃高超超临界技术的经济得益分析[J]. 热力透平,2010,39(3):170-174,220. HUANG Ou,PENG Ze-ying. Economy of 700 ℃ high USC technology[J]. Thermal Turbine,2010,39(3):170-174,220. [2] 纪世东,周荣灿,王生鹏,等. 700 ℃等级先进超超临界发电技术研发现状及国产化建议[J]. 热力发电,2011,40(7):86-88. JI Shi-dong, ZHOU Rong-can,WANG Sheng-peng, et al .Research status and suggestions of 700 ℃ advanced ultra-supercritical technology[J]. Thermal Power Generation,2011,40(7):86-88. [3] 周荣灿,范长信. 超超临界火电厂材料研究综述及选材分析[C]//超超临界火电机组技术协作网第一届年会论文集,温州,中国电机工程学会,2005:32-42. [4] ROBERT R R,PATRICIA A R,PURGERT M R, et al . Steam turbine materials for ultra supercritical coal power plants[DB/OL]. NETL’s office of coal and power system:Advanced research,2007. http://www.netl.doe.gov/publications/factsheets/project/Proj456.pdf. [5] ROBERT M P. Steam turbine materials for ultra supercritical power plants[DB/OL].Steam Turbine Materials Consortium,NETL’s office of coal and power system:Advanced research,2006. http://www.netl.doe.gov/technologies/coalpower/advresearch/pubs/annualProgressReport %20100105_093006.pdf. [6] FOLGARAIT P.The role of advanced materials and performance- driven design criteria in the development of the EU energy industry[DB/OL]. CSM,2010.http://www.c-s-m.it/uploaded_files/attachments/201004061270573415/Folgarait_The%20role%20of%20advanced%20materials%20in%20the%20development%20of%20the%20EU%20Energy%20Industry_PF%20%28CSM%29.pdf. [7] FUKUDA M.Advanced USC technology development in Japan[C]//Proceedings of 3rd Symposium on Heat Resistant Steels and Alloys for High Efficiency USC Power Plant. Tsukuba Japan,2009. [8] BLUM R,KJAER S,BUGGE J.Development of a PF fired high efficiency power plant (AD700)[C]//Energy Solutions for Sustainable Development Proceedings Riso International Energy Conference. Copenhagen Denmark,2007. [9] VIS V,ROBERT P, PATRICIA R. Coal-fired power materials,part 2[J]. Advanced Materials & Processes,2008,166(9):41-45. [10] VISWANATHAN R,SHINGLEDECKER J.Evaluating materials technology for advanced ultra supercritical coal-fired plants[J/OL].Power,2010,154(8):41-45. http://www.powermag.com/issues/features/ Evaluating-Materials-%20Technology-for-Advanced-Ultrasupercritical-Coal-Fired-Plants_2880.html. [11] ABE F. Ultra supercritical coal-fired power generation materials[C]//Materials Outlook for Energy and Environment:New Material Science of the 21st Century Toward the Solution of Energy And Environment Issues. Tsukuba Japan,2008. [12] HASHIZUME R,TAMURA O.Beneficial effect of Re on the long-term creep of high Cr ferritic heat resistant steels[C]//Proceedings 9th Liege Conference:Materials for Advanced Power Engineering 2010,Liege,Belgium,2010. [13] IGARASHI M,SEMBA H,YONEMURA M, et al . Advances in materials technology for A-USC power plant boilers[C]//3rd Symposium on Heat Resistant Steels and Alloys for High Efficiency USC Power Plant 2009. Tsukuba Japan,2009. [14] MINARMI Y,CAMINADA S,FUKUI T, et al . Long term properties and micro-structural evolution of 18Cr-10Ni-3Cu-Ti-Nb austenitic stainless steel for boiler tube application[C]// Proceedings of 9th Liege Conference:Materials for Advanced Power Engineering 2010.Liege,Belgium,2010. [15] YAMAMOTO Y,BRADY M P.SANTELLA M L, et al . Development of alumina-forming austenitic (AFA) stainless steels[C]//22nd Annual Conference on Fossil Energy Materials. Pittsburgh,USA, 2008. [16] HASHIMOTO T,TNAKA Y,HOKANO M, et al . Latest technology of highly efficient coal-fired thermal power plant and future prospects[J].Mitsubishi Heavy Industries, Technical Review,2008,45(1):11-14. [17] TAKEDA Y,KANAYA M,YAMAMOTO S, et al . Oxidation and cracking behavior of nickel base super alloys under bending stress in advanced steam condition beyond 700 ℃[C]//International Conference on Power Engineering-2007. Hangzhou,China, 2007. [18] KAJIKAWA K,SATO T,YAMADA H. Freckle formation in Ni-base super alloys[J]. Tetsu-to- Hagane/Journal of Iron and Steel Institute of Japan,2009,95(8):613-619. [19] Nickel-base super alloy materials for increasing power generation efficiency of A-USC steam turbines[J]. Materials:Hitachi Technology,2010,59(2):66. [20] PIRSCHER A. Alstom steam turbine design for AD700 power plant[EB/OL]. Milan Conference,2005. https://projectweb.elsam-eng.com/AD700/Milan%20Conference/Attachment%2010%20-%20 Milan %20conference%202005.pdf. [21] KOSMAN W, ROSKOSZ M, NAWRAT K. Thermal elongations in steam turbines with welded rotors made of advanced materials at supercritical steam parameters[J]. Applied Thermal Engineering,2009,29(16):3386-3393. [22] AGUERO A. Progress in the development of coatings for protection of new generation steam plant component[J]. Energy Materials: Materials Science and Engineering for Energy Systems,2008,3(1):35-44. [23] VISWANATHAN R,COLEMAN K,RAO U. Materials for ultra- supercritical coal-fired power plant boilers[J]. International journal of Pressure Vessels and Piping,2006,83(11-12):778-783. [24] 蒋浦宁.超超临界汽轮机高温部件的结构设计[J]. 热力透平,2008,37(1):16-21. JIANG Pu-ning.Structural design of high-temperature components for ultra-supercritical steam turbine[J]. Thermal Turbine, 2008, 37(1):16-21. [25] PIWOWARSKI M.Optimization of steam cycles with respect to supercritical parameters[J]. Polish Maritime Research,special issue,2009(S1):45-51. [26] FUKUDA M,SATO H. System simulation for 700 class high temperature ultra supercritical steam power plant with cooling technology[J]. Transactions of the Japan Society of Mechanical Engineers,B,2007,73(2):638-645. [27] FUKUDA M,SATO H. System evaluation for high temperature ultra supercritical steam power plants[J]. Transactions of the Japan Society of Mechanical Engineers,B,2006,72(10):2570-2577. [28] BOHN D,KREWINKEL R,TIAN Shu-qing. Cooling performance of grid-sheets for highly loaded ultra-supercritical steam turbines[J].Frontiers of Energy and Power Engineering in China,2009,3(3):313-320. [29] BEISS P,E1-MAGD E,STUHRMANN J.Characterization and simulation of the creep behavior of sandwich structures for cooling thermally highly loaded steam turbine components[J]. Materials Science and Engineering A,2009,510-511:420-424. |