[1] 曾德勇. 烟塔合一工程综合调研[J]. 电力建设, 2007, 28(3):41-45 ZENG Deyong. Survey on engineering synthesis of natural draft cooling tower(NDCT) with flue gas injection[J]. Electric Power Construction, 2007, 28(3):41-45 [2] 成新兴, 李帅英, 武宝会. 等. 四塔合一式脱硫除尘设施在600 MW机组中的应用[J]. 中国电力, 2018, 51(2):149−155. CHENG Xinxing, LI Shuaiying, WU Baohui. et al. Application of the four in one type desulfurization and dust removal equipment in a 600 MW unit[J]. Electric Power, 2018, 51(2):149−155. [3] 水处理剂阻垢性能的测定 碳酸钙沉积法:GB/T 16632-2008[S]. 2008. [4] 火电厂凝汽器管防腐防垢导则:DL/T300-2011[S]. 2011. [5] 水处理剂 复合阻垢缓蚀剂技术要求:Q/SH 0374-2010[S]. 2010. [6] 工业循环冷却水处理设计规范:GB50050-2017[S]. 2017. [7] 水处理剂 阻垢性能的测定 极限碳酸盐法:HG/T 4541-2013[S]. 2013. [8] 张曙光, 雷武, 陈卓, 等. 极限碳酸盐硬度法评定阻垢剂的阻性能[J]. 工业水处理, 2004, 24(4):27-29, 73 ZHANG Shuguang, LEI Wu, CHEN Zhuo, et al. Evaluation the efficiency of scale inhibitors by using limited carbonate hardness method[J]. Industrial Water Treatment, 2004, 24(4):27-29, 73 [9] 任春梅. 常用阻垢剂性能的极限碳酸盐硬度法评定[J]. 科教信息, 2009(25):419-420 [10] 海水循环冷却水处理设计规范:GB/T 23248-2009[S].2009. [11] 火力发电厂凝汽器及辅机冷却器管选材导则:DL/T 712-2010[S].2010. [12] 许臻, 降晓艳, 苏艳, 等. 一种稳定控制循环水浓缩倍率的方法及其应用[J]. 中国电力, 2015, 48(2):38-40, 103 XU Zhen, JIANG Xiaoyan, SU Yan, et al. A method of circulating water concentration rate stabilization and its application[J]. Electric Power, 2015, 48(2):38-40, 103 [13] 海水冷却水处理药剂性能评价方法 第1部分:缓蚀性能的测定:GB/T 34550.1-2018[S].2018. [14] 海水冷却水处理药剂性能评价方法 第2部分:阻垢性能的测定:GB/T 34550.2-2017[S].2017. [15] 海水冷却水处理药剂性能评价方法 第3部分:菌藻抑制性能的测定:GB/T 34550.3-2017[S].2017. [16] 海水冷却水处理药剂性能评价方法 第4部分:动态模拟试验:GB/T34550.4-2017[S]. 2017. [17] 于金山, 赵春海. 烟塔合一技术对循环水水质的影响[J]. 东北电力大学学报, 2012, 32(6):47-50 YU Jinshan, ZHAO Chunhai. The effect about technology of integrated chimney cooling tower in circulating cooling water quality change[J]. Journal of Northeast University, 2012, 32(6):47-50 [18] 郭军科, 于金山, 邵林, 等. 排烟冷却塔烟气结露液体对循环水水质的影响[J]. 工业水处理, 2014, 34(12):65-67 GUO Junke, YU Jinshan, SHAO Lin, et al. Effect of draft cooling tower flue gas condensed liquid on the quality of circulating water[J]. Industrial Water Treatment, 2014, 34(12):65-67 [19] 李兴, 赵迎, 刘国树. 烟塔合一条件下中水循环水处理技术与应用[J]. 天津电力技术, 2012(1):34-36 [20] 曾德勇, 罗奖合. 由冷却塔排放烟气脱硫净烟气对循环冷却水水质的影响及其对策研究[J]. 热力发电, 2005, 34(3):61-64, 73 ZENG Deyong, LUO Jianghe. Influence of purified flue gas discharging from FGD facility through cooling tower upon quality of circulatory cooling water and study on counter measures thereof[J]. Thermal Power Generation, 2005, 34(3):61-64, 73 [21] 张占梅,何世德,李锐,等. 烟塔合一技术用于循环冷却水处理[J]. 工业水处理, 2009, 29(8):89-92 ZHANG ZHanmei, HE Shide, LI Rui, et al. Technology of circulating cooling water treatment for cooling tower with flue gas injection[J]. Industrial Water Treatment, 2009, 29(8):89-92 [22] 曾德勇. 国内脱硫-烟塔合一工程设计[J]. 电力建设, 2007, 28(5):57-60 ZENG Deyong. Engineering design of desulfurizing and NDCT with flue gas injection in China[J]. Electric Power Construction, 2007, 28(5):57-60 [23] 庄建华. 烟塔合一技术的应用及对环境影响的分析[J]. 发电设备, 2010, 24(5):381-384 ZHUANG Jianhua. Application of stack and cooling tower unification technology and the influence on environment[J]. Power Equipment, 2010, 24(5):381-384 [24] 温凯. 烟塔合一技术环境影响及经济分析[J]. 当代石油石化, 2012, 20(1):19-22 WEN Kai. The environmental influence of smoke tower integration technology and the analysis of its economics[J]. Petroleum Petrochemical Today, 2012, 20(1):19-22 [25] 汤蕴琳. 火电厂烟塔合一技术的应用[J]. 电力建设, 2005, 26(2):11-12 TANG Yunlin. The environmental influence of smoke tower integration technology and the analysis of its Economics[J]. Electric Power Construction, 2005, 26(2):11-12
|