中国电力 ›› 2025, Vol. 58 ›› Issue (9): 205-218.DOI: 10.11930/j.issn.1004-9649.202503034
• 电力市场 • 上一篇
张楠1(
), 郭庆雷2(
), 杜哲2, 王栋2, 张岩3, 赵靓3, 蒋宇4
收稿日期:2025-03-13
发布日期:2025-09-26
出版日期:2025-09-28
作者简介:基金资助:
ZHANG Nan1(
), GUO Qinglei2(
), DU Zhe2, WANG Dong2, ZHANG Yan3, ZHAO Liang3, JIANG Yu4
Received:2025-03-13
Online:2025-09-26
Published:2025-09-28
Supported by:摘要:
当前聚合式绿电交易面临供需匹配效率低和信任机制缺失的双重挑战,亟须多技术协同构建灵活可信的交易体系。为此,创新性地融合主观逻辑信任评估模型、区块链不可篡改的存证机制及智能合约自动执行机制,构建了一种多技术协同的可信合约化交易模型。首先,通过构建基于交易行为特征分析的信誉量化机制,动态刻画交易主体可信度的演化规律;其次,设计基于烟花算法的分布式博弈匹配机制,实现多主体间的自主优化与高效匹配;进一步开发基于区块链的全流程智能合约链,打通聚合申报、撮合匹配及资金结算等关键环节,实现交易流程的可信、自动化闭环执行。仿真结果表明,相较于传统模式,所提动态信誉机制实现了对交易主体可信度的实时评估,有效提升了市场环境的透明度与公信力;绿电消纳率最高提升了46.5个百分点,系统总收益提升达38.2%;合约执行时延降低49.7%,吞吐量提升55%。
张楠, 郭庆雷, 杜哲, 王栋, 张岩, 赵靓, 蒋宇. 面向分布式新能源聚合交易的可信合约化交易模型[J]. 中国电力, 2025, 58(9): 205-218.
ZHANG Nan, GUO Qinglei, DU Zhe, WANG Dong, ZHANG Yan, ZHAO Liang, JIANG Yu. A Trusted Contract-Based Trading Model for Distributed New Energy Aggregation Trading[J]. Electric Power, 2025, 58(9): 205-218.
| 1 | 国家能源局. “十四五”现代能源体系规划[EB/OL]. (2022-01-29) [2025-07-21]. https://www.gov.cn/zhengce/zhengceku/202203/23/content_5680759.htm. |
| 2 | 国家能源局. 国家能源局2025年一季度新闻发布会文字实录[EB/OL]. (2025-1-23) [2025-07-21]. https://www.nea.gov.cn/20250123/544b9af2b6aa4590a60945e81e0d8ee1/c.html. |
| 3 | 北京电力交易中心. 关于印发《北京电力交易中心绿色电力交易实施细则(2024年修订稿)》的通知[Z]. |
| 4 | 江苏电力交易中心有限公司. 《关于高质量做好全省分布式光伏接网消纳的通知》(苏电注册公告2024-23号)[Z]. |
| 5 | 国家能源局. 关于印发《分布式光伏发电开发建设管理办法》的通知(国能发新能规〔2025〕7号) [Z]. |
| 6 | 翟哲, 陈梓煜, 刘起兴, 等. 计及风险管理的分布式资源聚合商电力市场交易模型[J]. 中国电力, 2025, 58 (6): 56- 66, 155. |
| ZHAI Zhe, CHEN Ziyu, LIU Qixing, et al. An electricity market trading model for distributed resource aggregators considering risk management[J]. Electric Power, 2025, 58 (6): 56- 66, 155. | |
| 7 | 刘军会, 龚健, 佟炳绅, 等. 基于分布式储能与光伏的虚拟电厂与配电网协同优化方法[J]. 中国电力, 2025, 58 (6): 1- 9. |
| LIU Junhui, GONG Jian, TONG Bingshen, et al. Coordinated optimization method for virtual power plants and distribution networks considering distributed energy storage and photovoltaics[J]. Electric Power, 2025, 58 (6): 1- 9. | |
| 8 | 殷嘉成, 吴军, 朱瑞金, 等. 基于两阶段鲁棒优化的含SOP配电网重构方法[J]. 智慧电力, 2025, 53 (6): 108- 115. |
| YIN Jiacheng, WU Jun, ZHU Ruijin, et al. A two-stage robust optimization-based SOP-integrated distribution network reconfiguration method[J]. Smart Power, 2025, 53 (6): 108- 115. | |
| 9 | 李明扬, 张智. 基于强化学习的含分布式风-光-储虚拟电厂优化调度[J]. 智慧电力, 2024, 52 (8): 50- 56. |
| LI Mingyang, ZHANG Zhi. Optimal dispatch of distributed wind-solar-storage virtual power plants based on reinforcement learning[J]. Smart Power, 2024, 52 (8): 50- 56. | |
| 10 | 陈启鑫, 王克道, 陈思捷, 等. 面向分布式主体的可交易能源系统: 体系架构、机制设计与关键技术[J]. 电力系统自动化, 2018, 42 (3): 1- 7, 31. |
| CHEN Qixin, WANG Kedao, CHEN Sijie, et al. Transactive energy system for distributed agents: architecture, mechanism design and key technologies[J]. Automation of Electric Power Systems, 2018, 42 (3): 1- 7, 31. | |
| 11 |
BUKAR A L, HAMZA M F, AYUB S, et al. Peer-to-peer electricity trading: a systematic review on current developments and perspectives[J]. Renewable Energy Focus, 2023, 44, 317- 333.
DOI |
| 12 |
ZHANG T Y, FENG T T, CUI M L. Smart contract design and process optimization of carbon trading based on blockchain: The case of China's electric power sector[J]. Journal of Cleaner Production, 2023, 397, 136509.
DOI |
| 13 | 赵勇, 陆宏智, 俞耀文, 等. 基于区块链的可信电力交易系统设计[J]. 信息技术与管理应用, 2023, (1): 102- 112. |
| ZHAO Yong, LU Hongzhi, YU Yaowen, et al. Design of blockchain-based trustworthy electricity trading system[J]. Information Technology and Management Application, 2023, (1): 102- 112. | |
| 14 | 汤涤非, 董晨景, 王海超, 等. 基于区块链的小型光伏电站电力双边直接交易场景应用研究[J]. 机械设计与制造工程, 2023, 52 (11): 111- 116. |
| TANG Difei, DONG Chenjing, WANG Haichao, et al. Application research on the bilateral transaction of photovoltaic power station on the blockchain[J]. Machine Design and Manufacturing Engineering, 2023, 52 (11): 111- 116. | |
| 15 | GAO Z G, ALSHEHRI K, BIRGE J R. Aggregating distributed energy resources: efficiency and market power[J]. Manufacturing & Service Operations Management, 2024, 26 (3): 834- 852. |
| 16 |
靳开元, 杨建华, 陈正, 等. 基于区块链的分布式光伏就地消纳交易模式研究[J]. 中国电力, 2021, 54 (5): 8- 16.
DOI |
|
JIN Kaiyuan, YANG Jianhua, CHEN Zheng, et al. Blockchain-based transaction model of distributed photovoltaic generation for local power consumption[J]. Electric Power, 2021, 54 (5): 8- 16.
DOI |
|
| 17 |
张燕, 乔松博, 徐奇锋, 等. 基于纳什议价理论的分布式绿色电力交易优化分析[J]. 中国电力, 2022, 55 (12): 168- 178.
DOI |
|
ZHANG Yan, QIAO Songbo, XU Qifeng, et al. Analysis of distributed green power transaction optimization based on Nash bargaining theory[J]. Electric Power, 2022, 55 (12): 168- 178.
DOI |
|
| 18 | 赵思翔, 郑思达, 彭鑫霞, 等. 基于区块链的电动汽车去中心化交易研究[J]. 北京化工大学学报(自然科学版), 2024, 51 (2): 101- 108. |
| ZHAO Sixiang, ZHENG Sida, PENG Xinxia, et al. A decentralized transaction method based on block chain in V2G[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2024, 51 (2): 101- 108. | |
| 19 | ZHENG Z X, QIAN Z H, LIU Y, et al. A smart contract-based microgrid large-scale electricity trading system[C]//2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE). Guangzhou, China. IEEE, 2023: 1377–1382. |
| 20 | 李红伟, 颜欣藜. 基于区块链技术的微电网系统的自主电力交易模型[J]. 通信与信息技术, 2023, (6): 113- 119. |
| LI Hongwei, YAN Xinli. Autonomous power trading model of Microgrid system based on block chain technology[J]. Communication & Information Technology, 2023, (6): 113- 119. | |
| 21 | 张靖琛. 基于区块链的居民用户可信聚合响应机制[D]. 杭州: 浙江大学, 2023. |
| ZHANG Jingchen. Blockchain-based trusted aggregation response mechanism for residential user[D]. Hangzhou: Zhejiang University, 2023. | |
| 22 | 傅成程, 张春雁, 刘键烨, 等. 负荷聚合商参与需求侧资源聚合优化调控研究[J]. 中国电力, 2025, 58 (8): 1- 11. |
| FU Chengcheng, ZHANG Chunyan, LIU Jianye, et al. Research on load aggregators' participation in DSRs optimization and regulation[J]. Electric Power, 2025, 58 (8): 1- 11. | |
| 23 | 周航, 姜河, 赵琰, 等. 适用于各单元共识交易的电力区块链系统优化调度研究[J]. 计算机科学, 2022, 49 (S1): 771- 776. |
| ZHOU Hang, JIANG He, ZHAO Yan, et al. Study on optimal scheduling of power blockchain system for consensus transaction of each unit[J]. Computer Science, 2022, 49 (S1): 771- 776. | |
| 24 | 马卓颖. 基于联盟链的能源互联网中用户侧交易模型研究[D]. 北京: 华北电力大学, 2021. |
| MA Zhuoying. Research on user-side transaction model in energyInternet based on consortium blockchain[D]. Beijing: North China Electric Power University, 2021. | |
| 25 |
ZHOU K L, CHONG J, LU X H, et al. Credit-based peer-to-peer electricity trading in energy blockchain environment[J]. IEEE Transactions on Smart Grid, 2022, 13 (1): 678- 687.
DOI |
| 26 | 周步祥, 曹强, 臧天磊, 等. 基于区块链的微电网双层博弈电力交易优化决策[J]. 电力自动化设备, 2022, 42 (9): 35- 42. |
| ZHOU Buxiang, CAO Qiang, ZANG Tianlei, et al. Electricity trading optimization decision for microgrid based on blockchain and two-level game[J]. Electric Power Automation Equipment, 2022, 42 (9): 35- 42. | |
| 27 | 王建斌, 康勇, 谭忠富. 互联电力交易合同参数优化模型[J]. 电力自动化设备, 2007, 27 (8): 30- 33. |
| WANG Jianbin, KANG Yong, TAN Zhongfu. Optimization model of interchange contract parameters[J]. Electric Power Automation Equipment, 2007, 27 (8): 30- 33. | |
| 28 | LIU Q, LIAO Y Q, TANG B, et al. A trust model based on subjective logic for multi-domains in grids[C]//2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application. Wuhan, China. IEEE, 2008: 882–886. |
| 29 | JØSANG A. Subjective logic: A formalism for reasoning under uncertainty[M]. Springer, 2016. |
| 30 | GAO W, ZHANG G Y, CHEN W H, et al. A trust model based on subjective logic[C]//2009 Fourth International Conference on Internet Computing for Science and Engineering. Harbin, China. IEEE, 2009: 272-276. |
| 31 | 宝昕宇. 多售电主体非合作博弈电价制定方法研究[D]. 沈阳: 沈阳工业大学, 2023. |
| BAO Xinyu. Research on the method of setting tariff for non-cooperative game of multiple electricity selling entities[D]. Shenyang: Shenyang University of Technology, 2023. | |
| 32 | TAN Y, ZHU Y C. Fireworks algorithm for optimization[M]//Advances in Swarm Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 355-364. |
| 33 | 曾德良, 邓志光, 陈彦桥. 改进烟花算法在火电厂负荷优化分配中的应用[J]. 应用科学学报, 2018, 36 (3): 542- 552. |
| ZENG Deliang, DENG Zhiguang, CHEN Yanqiao. Application of improved fireworks algorithm in optimal load distribution of thermal power plant[J]. Journal of Applied Sciences, 2018, 36 (3): 542- 552. | |
| 34 | 彭博, 邹乐, 李昕, 等. 基于改进烟花算法的配电网优化重构[J]. 应用科技, 2023, 50 (4): 84- 89. |
| PENG Bo, ZOU Le, LI Xin, et al. Optimal reconfiguration of distribution network based on improved fireworks algorithm[J]. Applied Science and Technology, 2023, 50 (4): 84- 89. | |
| 35 | 张尧翔, 刘文颖, 庞清仑, 等. 基于主从博弈的跨境新型电力系统双边交易决策方法[J]. 电力系统自动化, 2023, 47 (4): 19- 26. |
| ZHANG Yaoxiang, LIU Wenying, PANG Qinglun, et al. Bilateral transaction decision-making method for cross-border new power system based on Stackelberg game[J]. Automation of Electric Power Systems, 2023, 47 (4): 19- 26. |
| [1] | 王辉, 夏玉琦, 李欣, 董宇成, 周子澜. 基于多主体三层博弈的区域综合能源系统低碳运行策略[J]. 中国电力, 2025, 58(8): 69-83. |
| [2] | 傅成程, 张春雁, 刘键烨, 贾德香, 李丹, 王素. 负荷聚合商参与需求侧资源聚合优化调控方法[J]. 中国电力, 2025, 58(8): 1-11. |
| [3] | 翟哲, 陈梓煜, 刘起兴, 梁彦杰, 李智勇. 计及风险管理的分布式资源聚合商电力市场交易模型[J]. 中国电力, 2025, 58(6): 56-66, 155. |
| [4] | 孙东磊, 孙毅, 刘蕊, 孙鹏凯, 张玉敏. 计及多层级配电网的分布式新能源最大消纳空间分解测算[J]. 中国电力, 2024, 57(8): 108-116. |
| [5] | 李佳蔚, 张冠宇. 大规模分布式新能源接入对省级电网稳定性影响[J]. 中国电力, 2024, 57(6): 174-180. |
| [6] | 甘润东, 龙玉江, 汤杰, 何熙, 罗鸿轩, 金鑫. 计及负荷时空转移需求响应的数据中心聚合商最优运行策略[J]. 中国电力, 2024, 57(3): 20-26. |
| [7] | 刘国伟, 马楠, 邓浩, 程卓, 曹毅, 刘志文. 考虑需求侧管理和网络重构的配电网新能源承载能力评估[J]. 中国电力, 2023, 56(8): 186-192. |
| [8] | 李达, 郭庆雷, 王栋, 王伟贤, 周冬旭. 基于区块链的能源电力数据验证与溯源模型[J]. 中国电力, 2023, 56(5): 203-208. |
| [9] | 曾垂辉, 李文正, 李宝伟, 谢俊. 含多分布式能源聚合商的本地电力市场最优能源交易策略[J]. 中国电力, 2023, 56(11): 236-245. |
| [10] | 李旭东, 杨烨, 李帆琪, 时全佑, 谭忠富. 计及电价不确定性和容量衰减的电动汽车充放电商业模式[J]. 中国电力, 2023, 56(1): 38-48. |
| [11] | 艾欣, 徐立敏. 考虑需求侧灵活性资源的区域电能共享市场模型[J]. 中国电力, 2022, 55(6): 53-64. |
| [12] | 谭鸣骢, 王玲玲, 蒋传文, 刘航航, 巫里尔沙, 唐炯. 考虑负荷聚合商调节潜力的需求响应双层优化模型[J]. 中国电力, 2022, 55(10): 32-44. |
| [13] | 刘威, 孙艺新, 陈睿欣, 崔维平, 王智敏. 基于区块链的电力数据交易方案设计[J]. 中国电力, 2021, 54(5): 17-27. |
| [14] | 叶明, 王刚, 周振, 杨芳. 区块链技术在分布式电源电费结算中的应用研究[J]. 中国电力, 2019, 52(6): 140-146. |
| [15] | 孙毅, 刘昌利, 刘迪, 李彬, 景栋盛, 陈宋宋. 计及滚动评价的居民群需求响应策略[J]. 中国电力, 2019, 52(2): 34-45. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编