中国电力 ›› 2025, Vol. 58 ›› Issue (6): 206-212.DOI: 10.11930/j.issn.1004-9649.202406003

• 新型电网 • 上一篇    

应用深度学习网络的变电站二次测量回路误差评估

吴江雄1(), 刘千宽2, 阳国燕1, 蒋连钿3   

  1. 1. 广西电网有限责任公司桂林供电局,广西 桂林 541002
    2. 中国南方电网电力调度控制中心,广东 广州 510663
    3. 广西电网有限责任公司电力调度控制中心,广西 南宁 530023
  • 收稿日期:2024-06-04 发布日期:2025-06-30 出版日期:2025-06-28
  • 作者简介:
    吴江雄(1986),男,高级工程师,从事电力系统继电保护及其运行与控制,E-mail:3766221298@qq.com
  • 基金资助:
    广西电网公司科技项目(GXKJXM20230092)。

Secondary Measurement Loop Error Assessment in Substations with Application of Deep Learning Networks

WU Jiangxiong1(), LIU Qiankuan2, YANG Guoyan1, JIANG Liandian3   

  1. 1. Guilin Power Supply Bureau of Guangxi Power Grid Co., Ltd., Guilin 541002, China
    2. Power Dispatching Control Center of China Southern Power Grid, Guangzhou 510663, China
    3. Power Dispatching Control Center of Guangxi Power Grid Co., Ltd., Nanning 530023, China
  • Received:2024-06-04 Online:2025-06-30 Published:2025-06-28
  • Supported by:
    This work is supported by Science and Technology Project of Guangxi Electric Power Company (No.GXKJXM20230092).

摘要:

变电站的测量及保护装置伴随环境以及自身使用磨损易引起其监测的电流变动产生误差,从而导致测量回路面临误动拒动风险,常规监控方法难以检测该类幅度变化,基于此提出一种条件生成对抗网络(conditional generative adversarial nets,CGAN)和改进的长短期记忆(long short-term memory,LSTM)网络的误差评估方法。首先,采集正常运行下测量回路的电流数据,引入CGAN方法进行误差数据的增强生成;其次,对生成后的数据进行经验模态分解(empirical mode decomposition,EMD)构成样本并选择最优特征集;为进一步评估误差状态,采用改进的长短期记忆(long short-term memory,LSTM)算法训练模型;最后,搭建PSCAD/EMTDC仿真模型验证本文所提方法的可靠性和准确性。测试实验结果表明:本文所采用的新方法能够可靠地评估二次系统测量回路2%的误差状态。

关键词: 测量回路, 生成式对抗网络, 误差评估

Abstract:

Measuring and protection devices in substations are susceptible to errors in the monitored current variations due to environmental and wear and tear, which leads to the risk of inadvertent refusal of the measuring circuits, and it is difficult to detect such amplitude variations by the conventional monitoring methods, based on which, this paper proposes a conditional generative adversarial network (CGAN) and an improved long and short-term memory network (STMN) for the error assessment method. Firstly, the current data of the measurement loop under normal operation is obtained, and the CGAN method is introduced to enhance the generation of error data; secondly, the EMD decomposition of the generated data is performed to form samples and the optimal set of features is selected; in order to further evaluate the error state, the improved LSTM algorithm is used to train the model; finally, a PSCAD/EMTDC simulation model is constructed to verify the reliability and accuracy of the methodology presented in this paper. Finally, a PSCAD/EMTDC simulation model is built to verify the reliability and accuracy of the proposed method. Finally, a PSCAD/EMTDC simulation model is constructed to verify the reliability and accuracy of the proposed method. The test results show that the new method adopted in this paper can reliably evaluate the error state of 2% of the measurement loop of the secondary system.

Key words: measurement loops, generative adversarial networks, error assessment


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?