中国电力 ›› 2025, Vol. 58 ›› Issue (5): 74-81, 198.DOI: 10.11930/j.issn.1004-9649.202404075
陈炯1(), 吴文清1(
), 李豪1, 秦子翌1, 陈翔1, 陈宣元2
收稿日期:
2024-04-16
发布日期:
2025-05-30
出版日期:
2025-05-28
作者简介:
基金资助:
CHEN Jiong1(), WU Wenqing1(
), LI Hao1, QIN Ziyi1, CHEN Xiang1, CHEN Xuanyuan2
Received:
2024-04-16
Online:
2025-05-30
Published:
2025-05-28
Supported by:
摘要:
针对独立光储微电网经常遭受的各种变化和不确定性,提出一种基于滑模的控制策略,以增强对干扰的鲁棒性,改善系统的动态性能。为有效降低外界太阳照射对系统的不利影响,提出一种基于前置DC/DC变换器的非奇异快速终端滑模(non-singular fast terminal sliding mode control,NFTSMC)级联电导增量法(incremental conductance method,InC)的方案,控制光伏输出电压跟踪基准电压,从而提高最大功率点跟踪(maximum power point tracking,MPPT)性能;为降低负载变化对系统的不利影响,提出一种基于滑模控制全桥逆变器的控制方案,从而保证系统稳态误差小、动态响应好;为保证直流母线电压稳定,采用传统的双回路PI控制方案实现双向DC/DC变换器,保证系统功率平衡。最后在Matlab/Simulink环境下进行仿真测试,验证控制策略的有效性。
陈炯, 吴文清, 李豪, 秦子翌, 陈翔, 陈宣元. 独立光储微电网控制策略研究[J]. 中国电力, 2025, 58(5): 74-81, 198.
CHEN Jiong, WU Wenqing, LI Hao, QIN Ziyi, CHEN Xiang, CHEN Xuanyuan. Research on Control Strategy of Independent Micro-grid with Photovoltaic Energy Storage[J]. Electric Power, 2025, 58(5): 74-81, 198.
设备 | 参数 | 数值 | ||
DC/DC变换器 | L/mH | 0.352 | ||
Cin/mF | 2.2 | |||
单相逆变器 | Lf/mH | 1.7 | ||
Cf/μF | 66 | |||
双向DC/DC变换器 | L1/mH | 0.3 | ||
C1/μF | 100 | |||
光伏电池 | 开路电压 Uoc/V | 44.14 | ||
短路电流 Isc/A | 5.43 | |||
最大功率点电压 Ump/V | 36.72 | |||
最大功率点电流 Imp/A | 5.03 |
表 1 系统参数
Table 1 System parameters
设备 | 参数 | 数值 | ||
DC/DC变换器 | L/mH | 0.352 | ||
Cin/mF | 2.2 | |||
单相逆变器 | Lf/mH | 1.7 | ||
Cf/μF | 66 | |||
双向DC/DC变换器 | L1/mH | 0.3 | ||
C1/μF | 100 | |||
光伏电池 | 开路电压 Uoc/V | 44.14 | ||
短路电流 Isc/A | 5.43 | |||
最大功率点电压 Ump/V | 36.72 | |||
最大功率点电流 Imp/A | 5.03 |
方案 | 波动幅值/V | 响应时间/s | 降幅/% | 响应提升/% | ||||
1 | 1.33 | 77.68 | 34.67 | |||||
2 | 5.96 |
表 2 2种控制方案下upv数据分析表
Table 2 upv data analysis under the two control schemes
方案 | 波动幅值/V | 响应时间/s | 降幅/% | 响应提升/% | ||||
1 | 1.33 | 77.68 | 34.67 | |||||
2 | 5.96 |
方案 | 波动幅值/A | 响应时间/s | 降幅/% | 响应提升/% | ||||
1 | 0.100 | 70.15 | 54.17 | |||||
2 | 0.335 |
表 3 2种控制方案下ipv数据分析表
Table 3 ipv data analysis under the two control schemes
方案 | 波动幅值/A | 响应时间/s | 降幅/% | 响应提升/% | ||||
1 | 0.100 | 70.15 | 54.17 | |||||
2 | 0.335 |
方案 | 波动幅值/W | 响应时间/s | 降幅/% | 响应提升/% | ||||
1 | 3.115 | 52.15 | 39.62 | |||||
2 | 6.510 |
表 4 2种控制方案下ppv数据分析表
Table 4 ppv data analysis under the two control schemes
方案 | 波动幅值/W | 响应时间/s | 降幅/% | 响应提升/% | ||||
1 | 3.115 | 52.15 | 39.62 | |||||
2 | 6.510 |
1 | 颜湘武, 王庆澳, 卢俊达, 等. 计及电动汽车和柔性负荷的微电网能量调度[J]. 电力系统保护与控制, 2023, 51 (17): 69- 79. |
YAN Xiangwu, WANG Qingao, LU Suoda, et al. Microgrid energy scheduling with electric vehicles and flexible loads[J]. Power System Protection and Control, 2023, 51 (17): 69- 79. | |
2 | 张纯江, 暴云飞, 孟宪慧, 等. 直流微网储能DC/DC变换器的自适应虚拟直流电机控制[J]. 电力系统保护与控制, 2023, 51 (1): 12- 20. |
ZHANG Chunjiang, BAO Yunfeng, MENG Xianhui, et al. Adaptive virtual DC machine control for a DC microgrid energy storage DC/DC converter[J]. Power System Protection and Control, 2023, 51 (1): 12- 20. | |
3 | 明远山, 胡慧慧, 刘凯旋, 等. 孤岛模式下直流微网中储能单元SOC均衡控制策略[J]. 电力科学与技术学报, 2023, 38 (4): 57- 64. |
MING Yuanshan, HU Huihui, LIU Kaixuan, et al. Research on SOC balance control strategy of energy storage unit in DC microgrid in island mode[J]. Journal of Electric Power Science and Technology, 2023, 38 (4): 57- 64. | |
4 |
LASHEEN M, ABDEL RAHMAN A K, ABDEL-SALAM M, et al. Performance enhancement of constant voltage based MPPT for photovoltaic applications using genetic algorithm[J]. Energy Procedia, 2016, 100, 217- 222.
DOI |
5 | 王伟, 戴朝华, 陈维荣, 等. 改进功率预测变步长扰动法在光伏MPPT中的研究[J]. 太阳能学报, 2022, 43 (2): 217- 225. |
WANG Wei, DAI Chaohua, CHEN Weirong, et al. Research on improved variable step perturbation algorithm for power prediction in photovoltaic mppt[J]. Acta Energiae Solaris Sinica, 2022, 43 (2): 217- 225. | |
6 | 张东宁. 基于改进电导增量法的光伏最大功率点跟踪策略研究[J]. 太阳能学报, 2022, 43 (8): 82- 90. |
ZHANG Dongning. Research on photovoltaic maximum power point tracking strategy based on improved conductance increment method[J]. Acta Energiae Solaris Sinica, 2022, 43 (8): 82- 90. | |
7 | 卫东, 王央康, 常亚文. 一种基于增量电导法的变步长MPPT算法[J]. 太阳能学报, 2018, 39 (5): 1277- 1283. |
WEI Dong, WANG Yangkang, CHANG Yawen. A variable step-size mppt algorithm based on incremental conductance method[J]. Acta Energiae Solaris Sinica, 2018, 39 (5): 1277- 1283. | |
8 | 曹新春, 王发强. 光伏发电系统MPPT算法的比较研究[J]. 电力科学与技术学报, 2024, 39 (5): 25- 35. |
CAO Xinchun, WANG Faqiang. A comparative study on MPPT algorithms for photovoltaic power generation systems[J]. Journal of Electric Power Science and Technology, 2024, 39 (5): 25- 35. | |
9 | 薛飞, 马鑫, 田蓓, 等. 基于改进蜻蜓算法的光伏全局最大功率追踪[J]. 中国电力, 2022, 55 (2): 131- 137. |
XUE Fei, MA Xin, TIAN Bei, et al. Photovoltaic global maximum power tracking based on improved dragonfly algorithm[J]. Electric Power, 2022, 55 (2): 131- 137. | |
10 | 李大虎, 周泓宇, 周悦, 等. 基于多元宇宙优化算法的混合光伏-热电系统MPPT设计[J]. 中国电力, 2023, 56 (11): 197- 205. |
LI Dahu, ZHOU Hongyu, ZHOU Yue, et al. Multi-verse optimization-based MPPT design for PV-TEG system[J]. Electric Power, 2023, 56 (11): 197- 205. | |
11 | 李凯, 姜新正. 基于改进粒子群区间二型模糊神经网络的MPPT控制研究[J]. 太阳能学报, 2024, 45 (5): 556- 564. |
LI Kai, JIANG Xinzheng. Mppt control based on improved particle swarm interval[J]. Acta Energiae Solaris Sinica, 2024, 45 (5): 556- 564. | |
12 |
PRADHAN R, SUBUDHI B. Double integral sliding mode MPPT control of a photovoltaic system[J]. IEEE Transactions on Control Systems Technology, 2016, 24 (1): 285- 292.
DOI |
13 |
KIHAL A, KRIM F, LAIB A, et al. An improved MPPT scheme employing adaptive integral derivative sliding mode control for photovoltaic systems under fast irradiation changes[J]. ISA Transactions, 2019, 87, 297- 306.
DOI |
14 |
SAAD W, SELLAMI A, GARCIA G. Terminal sliding mode control-based MPPT for a photovoltaic system with uncertainties[J]. International Journal of Modelling, Identification and Control, 2018, 29 (2): 118.
DOI |
15 | 李卓城, 王杨, 唐俊苗, 等. 基于逆变器剩余容量及自适应虚拟谐波阻抗控制的孤岛微电网谐波功率分配策略[J]. 电网技术, 2023, 47 (3): 1169- 1185. |
LI Zhuocheng, WANG Yang, TANG Junmiao, et al. Harmonic power allocation strategy in islanded microgrid based on remaining capacity and adaptive virtual harmonic impedance control of inverter[J]. Power System Technology, 2023, 47 (3): 1169- 1185. | |
16 | 董家伟, 侯院军, 龚春阳, 等. 基于二阶超前滞后环节的电压控制型微电网并网逆变器功率无差同步补偿策略[J]. 高电压技术, 2023, 49 (2): 849- 859. |
DONG Jiawei, HOU Yuanjun, GONG Chunyang, et al. Second-order lead-lag link based power synchronization compensation strategy of voltage-controlled grid-connected microgrid inverter[J]. High Voltage Engineering, 2023, 49 (2): 849- 859. | |
17 | 谢沁园, 王瑞田, 林克文, 等. 基于端口电压积分与变下垂系数的逆变器并联下垂控制策略[J]. 电工技术学报, 2023, 38 (6): 1596- 1607. |
XIE Qinyuan, WANG Ruitian, LIN Kewen, et al. Droop control strategy of parallel inverters based on port voltage integration and variable droop coefficient[J]. Transactions of China Electrotechnical Society, 2023, 38 (6): 1596- 1607. | |
18 | KATIR H, ABOULOIFA A, NOUSSI K, et al. Cascaded H-bridge inverters for UPS applications: adaptive backstepping control and formal stability analysis[J]. IEEE Control Systems Letters, 2021, 6, 145- 150. |
19 |
ZHENG C M, DRAGIČEVIĆ T, BLAABJERG F. Current-sensorless finite-set model predictive control for LC-filtered voltage source inverters[J]. IEEE Transactions on Power Electronics, 2020, 35 (1): 1086- 1095.
DOI |
20 |
ZHENG C M, DRAGIČEVIĆ T, ZHANG Z B, et al. Model predictive control of LC-filtered voltage source inverters with optimal switching sequence[J]. IEEE Transactions on Power Electronics, 2021, 36 (3): 3422- 3436.
DOI |
21 |
MENG Q, HOU Z S. Active disturbance rejection based repetitive learning control with applications in power inverters[J]. IEEE Transactions on Control Systems Technology, 2021, 29 (5): 2038- 2048.
DOI |
22 |
VAN DIJK E, SPRUIJT J N, O’SULLIVAN D M, et al. PWM-switch modeling of DC-DC converters[J]. IEEE Transactions on Power Electronics, 1995, 10 (6): 659- 665.
DOI |
23 |
李升波, 李克强, 王建强, 等. 非奇异快速的终端滑模控制方法[J]. 信息与控制, 2009, 38 (1): 1- 8.
DOI |
LI Shengbo, LI Keqiang, WANG Jianqiang, et al. Nonsingular and fast terminal sliding mode control method[J]. Information and Control, 2009, 38 (1): 1- 8.
DOI |
[1] | 陈程, 薛花, 扈曾辉, 王育飞. 桥臂不对称情形下MMC无源性PI控制方法[J]. 中国电力, 2023, 56(7): 107-116,124. |
[2] | 李大虎, 周泓宇, 周悦, 饶渝泽, 姚伟. 基于多元宇宙优化算法的混合光伏-热电系统MPPT设计[J]. 中国电力, 2023, 56(11): 197-205. |
[3] | 成云朋, 李建华, 蔡寿国, 张学波, 王永, 陆晔, 朱瑛. 考虑损耗的永磁风力发电系统改进功率反馈法最大风能跟踪控制[J]. 中国电力, 2023, 56(10): 62-70. |
[4] | 薛飞, 马鑫, 田蓓, 吴慧. 基于改进蜻蜓算法的光伏全局最大功率追踪[J]. 中国电力, 2022, 55(2): 131-137. |
[5] | 林祺蓉,王俏俏,林祺蔚,林琳,董晨晖,刘红霞. 基于差分进化算法的阴影影响下光伏阵列MPPT控制研究[J]. 中国电力, 2015, 48(6): 39-44. |
[6] | 袁晓玲, 陈宇. 自适应权重粒子群算法在阴影光伏发电最大功率点跟踪(MPPT)中的应用[J]. 中国电力, 2013, 46(10): 85-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||