中国电力 ›› 2023, Vol. 56 ›› Issue (11): 197-205.DOI: 10.11930/j.issn.1004-9649.202210127

• 新能源 • 上一篇    下一篇

基于多元宇宙优化算法的混合光伏-热电系统MPPT设计

李大虎1(), 周泓宇2(), 周悦1, 饶渝泽1, 姚伟2()   

  1. 1. 国网湖北省电力有限公司,湖北 武汉 430077
    2. 强电磁技术全国重点实验室(华中科技大学),湖北 武汉 430074
  • 收稿日期:2022-10-31 出版日期:2023-11-28 发布日期:2023-11-28
  • 作者简介:李大虎(1978—),男,博士,高级工程师(教授级),从事电力系统稳定与控制、电力系统安全稳定管理,E-mail: 6517562@qq.com
    周泓宇(1997—),男,通信作者,博士研究生,从事新能源电力系统稳定与控制研究,E-mail: ee.henry_zhou@foxmail.com
    姚 伟(1983—),男,博士,教授,博士生导师,从事交直流混联电网稳定性分析与控制、新能源电力系统稳定分析与控制研究,E-mail: w.yao@hust.edu.cn
  • 基金资助:
    国网湖北省电力有限公司科技项目(面向多特高压直流馈入和新能源基地发展的湖北新型电力系统运行与控制关键技术研究,52150521000W)。

Multi-verse Optimization-based MPPT Design for PV-TEG System

Dahu LI1(), Hongyu ZHOU2(), Yue ZHOU1, Yuze RAO1, Wei YAO2()   

  1. 1. State Grid Hubei Electric Power Co., Ltd., Wuhan 430077, China
    2. State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2022-10-31 Online:2023-11-28 Published:2023-11-28
  • Supported by:
    This work is supported by Science and Technology Project of State Grid Hubei Electric Power Co., Ltd. (Research on Key Technologies of Operation and Control of Hubei New Power System for Multi-UHVDC Feed in and New Energy Base Development, No.52150521000W).

摘要:

混合光伏-热电(centralized hybrid photovoltaic thermoelectric generator,PV-TEG)系统在部分遮蔽(partial shading condition,PSC)条件下呈现多个局部最大功率点(local maximum power point,LMPP)。采用多元宇宙优化算法(multi-verse optimization,MVO),用于PV-TEG系统在PSC下的最大功率点跟踪(maximum power point tracking,MPPT)。MVO通过平衡全局搜索和局部搜索,有效识别多个LMPPs中唯一的全局最大功率点(global maximum power point,GMPP),避免搜索结果陷入LMPP,以提高发电效率和能源利用率。算例仿真结果表明:基于MVO的MPPT可以在更短的时间内收集到更高的功率,实现功率波动最小。

关键词: 混合光伏-热电系统, 最大功率点跟踪, 多元宇宙优化算法, 部分遮蔽

Abstract:

A centralized hybrid photovoltaic thermoelectric generator (PV-TEG) system shows multiple local maximum power points (LMPPs) under a partial shading condition (PSC). The multi-verse optimization (MVO) is used for the maximum power point tracking (MPPT) of the PV-TEG system under PSC. MVO can effectively identify the unique global maximum power point (GMPP) among multiple LMPPs by balancing global search and local search, avoiding search results trapped in LMPP and improving generation efficiency and energy utilization. The simulation results of the example show that the MPPT based on the MVO algorithm can collect higher power in a shorter time and achieve the minimum power fluctuation.

Key words: centralized photovoltaic thermoelectric generator system, maximum power point tracking, multi-verse optimization, partial shading