中国电力 ›› 2023, Vol. 56 ›› Issue (11): 197-205.DOI: 10.11930/j.issn.1004-9649.202210127
李大虎1(), 周泓宇2(
), 周悦1, 饶渝泽1, 姚伟2(
)
收稿日期:
2022-10-31
出版日期:
2023-11-28
发布日期:
2023-11-28
作者简介:
李大虎(1978—),男,博士,高级工程师(教授级),从事电力系统稳定与控制、电力系统安全稳定管理,E-mail: 6517562@qq.com基金资助:
Dahu LI1(), Hongyu ZHOU2(
), Yue ZHOU1, Yuze RAO1, Wei YAO2(
)
Received:
2022-10-31
Online:
2023-11-28
Published:
2023-11-28
Supported by:
摘要:
混合光伏-热电(centralized hybrid photovoltaic thermoelectric generator,PV-TEG)系统在部分遮蔽(partial shading condition,PSC)条件下呈现多个局部最大功率点(local maximum power point,LMPP)。采用多元宇宙优化算法(multi-verse optimization,MVO),用于PV-TEG系统在PSC下的最大功率点跟踪(maximum power point tracking,MPPT)。MVO通过平衡全局搜索和局部搜索,有效识别多个LMPPs中唯一的全局最大功率点(global maximum power point,GMPP),避免搜索结果陷入LMPP,以提高发电效率和能源利用率。算例仿真结果表明:基于MVO的MPPT可以在更短的时间内收集到更高的功率,实现功率波动最小。
李大虎, 周泓宇, 周悦, 饶渝泽, 姚伟. 基于多元宇宙优化算法的混合光伏-热电系统MPPT设计[J]. 中国电力, 2023, 56(11): 197-205.
Dahu LI, Hongyu ZHOU, Yue ZHOU, Yuze RAO, Wei YAO. Multi-verse Optimization-based MPPT Design for PV-TEG System[J]. Electric Power, 2023, 56(11): 197-205.
PV系统 | ||||||||||||||||
模型 | 模块数量 | 最大功率/W | 开路电压/V | 短路电流/A | 电压最大值/V | 电流最大值/A | ||||||||||
A10 Green Technology A10 J-M60-225 | 60 | 224.9856 | 36.24 | 8.04 | 30.24 | 7.44 | ||||||||||
TEG系统 | 升压转换器 | |||||||||||||||
塞贝克系数 | 温度 T0/K | 转换式 | 开关频率 fs/kHz | 负载 R/Ω | 电感 L/mH | 电容/μF | ||||||||||
α0/(μV·K–1) | 变化率 α1/(μV·(sK)–1) | C1 | C2 | |||||||||||||
210 | 120 | 300 | Vout=Vin/(1–DC) | 20 | 3 | 250 | 66 | 200 |
表 1 混合PV-TEG系统和升压转换器的主要参数
Table 1 Main parameters of PV-TEG system and boost converter
PV系统 | ||||||||||||||||
模型 | 模块数量 | 最大功率/W | 开路电压/V | 短路电流/A | 电压最大值/V | 电流最大值/A | ||||||||||
A10 Green Technology A10 J-M60-225 | 60 | 224.9856 | 36.24 | 8.04 | 30.24 | 7.44 | ||||||||||
TEG系统 | 升压转换器 | |||||||||||||||
塞贝克系数 | 温度 T0/K | 转换式 | 开关频率 fs/kHz | 负载 R/Ω | 电感 L/mH | 电容/μF | ||||||||||
α0/(μV·K–1) | 变化率 α1/(μV·(sK)–1) | C1 | C2 | |||||||||||||
210 | 120 | 300 | Vout=Vin/(1–DC) | 20 | 3 | 250 | 66 | 200 |
算法 | 上界 | 下界 | 种群 数量 | 初始值 | 最大 迭代 次数 | 参数1 | 参数2 | 参数3 | ||||||||
MVO | 1 | 0 | 5 | 0.5 | 5 | WEPmax=1 | WEPmin=0.2 | 膨胀率 c=0.6 | ||||||||
MFO | 1 | 0 | 5 | 0.5 | 5 | 选择参数 t=0.6 | 路径数量 k=–1 | 火焰螺旋 参数 f=0.5 | ||||||||
GWO | 1 | 0 | 5 | 0.5 | 5 | α=1 | β=1.5 | δ=1.5 | ||||||||
FA | 1 | 0 | 5 | 0.5 | 5 | 步长因子 α=0.25 | 吸引度 β=0.2 | 光强度吸收 系数 γ=1 | ||||||||
PSO | 1 | 0 | 5 | 0.5 | 5 | 加速常数 c1, c2=2 | 惯性因子 w=0.6 | 速度最大值 Vmax=0.8 |
表 2 5种算法的参数设置
Table 2 Parameter settings of five algorithms
算法 | 上界 | 下界 | 种群 数量 | 初始值 | 最大 迭代 次数 | 参数1 | 参数2 | 参数3 | ||||||||
MVO | 1 | 0 | 5 | 0.5 | 5 | WEPmax=1 | WEPmin=0.2 | 膨胀率 c=0.6 | ||||||||
MFO | 1 | 0 | 5 | 0.5 | 5 | 选择参数 t=0.6 | 路径数量 k=–1 | 火焰螺旋 参数 f=0.5 | ||||||||
GWO | 1 | 0 | 5 | 0.5 | 5 | α=1 | β=1.5 | δ=1.5 | ||||||||
FA | 1 | 0 | 5 | 0.5 | 5 | 步长因子 α=0.25 | 吸引度 β=0.2 | 光强度吸收 系数 γ=1 | ||||||||
PSO | 1 | 0 | 5 | 0.5 | 5 | 加速常数 c1, c2=2 | 惯性因子 w=0.6 | 速度最大值 Vmax=0.8 |
图 8 集中式混合PV-TEG系统在固定光照条件下通过5种启发式算法的MPPT结果对比
Fig.8 Comparison of MPPT results of PV-TEG system under fixed lighting conditions by five heuristic algorithms
图 9 集中式混合PV-TEG系统在阶跃光照条件下通过5种启发式算法的MPPT结果对比
Fig.9 Comparison of MPPT results of PV-TEG system under step lighting conditions by five heuristic algorithms
算法 | 温度的阶跃变化 | 启动测试 | ||||||||||||||
功率/ W | 电流/ A | 电压/ V | 能量/ (W·s) | 功率/ W | 电流/ A | 电压/ V | 能量/ (W·s) | |||||||||
MVO | 130.0 | 1.89 | 68.8 | 236.5 | 195.6 | 2.62 | 74.7 | 92.6 | ||||||||
GWO | 114.5 | 1.78 | 64.0 | 225.6 | 195.1 | 2.62 | 74.5 | 90.5 | ||||||||
FA | 92.1 | 1.71 | 53.9 | 186.3 | 194.9 | 2.61 | 74.6 | 89.2 | ||||||||
MFO | 110.8 | 1.81 | 61.2 | 214.7 | 194.7 | 2.61 | 74.6 | 88.7 | ||||||||
PSO | 110.7 | 1.80 | 61.5 | 220.1 | 195.0 | 2.62 | 74.6 | 91.2 |
表 3 5种算法在2种情况下得到的结果
Table 3 Results obtained under two cases by five algorithms
算法 | 温度的阶跃变化 | 启动测试 | ||||||||||||||
功率/ W | 电流/ A | 电压/ V | 能量/ (W·s) | 功率/ W | 电流/ A | 电压/ V | 能量/ (W·s) | |||||||||
MVO | 130.0 | 1.89 | 68.8 | 236.5 | 195.6 | 2.62 | 74.7 | 92.6 | ||||||||
GWO | 114.5 | 1.78 | 64.0 | 225.6 | 195.1 | 2.62 | 74.5 | 90.5 | ||||||||
FA | 92.1 | 1.71 | 53.9 | 186.3 | 194.9 | 2.61 | 74.6 | 89.2 | ||||||||
MFO | 110.8 | 1.81 | 61.2 | 214.7 | 194.7 | 2.61 | 74.6 | 88.7 | ||||||||
PSO | 110.7 | 1.80 | 61.5 | 220.1 | 195.0 | 2.62 | 74.6 | 91.2 |
1 | 武群丽, 席曼. 基于电力供应链博弈的可再生能源政策效应研究[J]. 中国电力, 2022, 55 (5): 12- 20, 38. |
WU Qunli, XI Man. Research on effects of renewable energy policy based on power supply chain game[J]. Electric Power, 2022, 55 (5): 12- 20, 38. | |
2 | 许洪华, 邵桂萍, 鄂春良, 等. 我国未来能源系统及能源转型现实路径研究[J]. 发电技术, 2023, 44 (4): 484- 491. |
XU Honghua, SHAO Guiping, E Chunliang, et al. Research on China's future energy system and the realistic path of energy transformation[J]. Power Generation Technology, 2023, 44 (4): 484- 491. | |
3 |
MAHIDIN E, HUSIN H, ZAKI N. M, et al. Critical review of the integration of renewable energy sources with various technologies[J]. Protection and Control of Modern Power Systems, 2021, 6 (1): 37- 54.
DOI |
4 |
YANG B, WU S, ZHANG H, et al. Wave energy converter array layout optimization: A critical and comprehensive overview[J]. Renewable and Sustainable Energy Reviews, 2022, 167, 112668.
DOI |
5 | 董洁,乔建强. “双碳”目标下先进煤炭清洁利用发电技术研究综述,2022,55(8):202-212.[J]. 中国电力, 2022, 55 (8): 202- 212. |
DONG Jie, QIAO Jianqiang. A review on advanced clean coal power generation technology under "Carbon Peaking and Carbon Neutrality" goal[J]. Electric Power, 2022, 55 (8): 202- 212. | |
6 | 曹钰, 房磊. “双碳”背景下热电机组-储热联合运行消纳弃风策略[J]. 中国电力, 2022, 55 (10): 142- 149, 160. |
CAO Yu, FANG Lei. Combined operation strategy of CHP unit and heat accumulator for eliminate abandoned wind under "Double Carbon" background[J]. Electric Power, 2022, 55 (10): 142- 149, 160. | |
7 |
YANG B, WU S, LI Q, et al. Jellyfish search algorithm based optimal thermoelectric generation array reconfiguration under non-uniform temperature distribution condition[J]. Renewable Energy, 2023, 204, 197- 217.
DOI |
8 | GUCHHAIT P K, BANERJEE A. Stability enhancement of wind energy integrated hybrid system with the help of static synchronous compensator and symbiosis organisms search algorithm[J]. Protection and Control of Modern Power Systems, 2020, 5 (1): 1- 13. |
9 | 王奔, 牛洪海, 徐卫峰, 等. 基于PLC的槽式光热太阳能追踪控制系统的研究与应用[J]. 中国电力, 2020, 53 (11): 185- 194. |
WANG Ben, NIU Honghai, XU Weifeng, et al. Research and application of parabolic sun-tracking system based on PLC[J]. Electric Power, 2020, 53 (11): 185- 194. | |
10 | 薛飞, 马鑫, 田蓓, 等. 基于改进蜻蜓算法的光伏全局最大功率追踪[J]. 中国电力, 2022, 55 (2): 131- 137. |
XUE Fei, MA Xin, TIAN Bei, et al. Photovoltaic global maximum power tracking based on improved dragonfly algorithm[J]. Electric Power, 2022, 55 (2): 131- 137. | |
11 |
LUND J W, TOTH A N. Direct utilization of geothermal energy 2020 worldwide review[J]. Geothermics, 2021, 90, 101915.
DOI |
12 |
李鹏, 信鹏飞, 窦鹏冲, 等. 计及光伏发电最大功率跟踪的光储微电网功率协调控制方法[J]. 电力系统自动化, 2014, 38 (4): 8- 13, 103.
DOI |
LI Peng, XIN Pengfei, DOU Pengchong, et al. Power coordinated control of photovoltaic energy-storage system in microgrid under photovoltaic maximum power point tracking condition[J]. Automation of Electric Power Systems, 2014, 38 (4): 8- 13, 103.
DOI |
|
13 |
HÜBNER S, ECK M, STILLER C, et al. Techno-economic heat transfer optimization of large scale latent heat energy storage systems in solar thermal power plants[J]. Applied Thermal Engineering, 2016, 98, 483- 491.
DOI |
14 |
LU F L, ZHU Y, PAN M Z, et al. Thermodynamic, economic, and environmental analysis of new combined power and space cooling system for waste heat recovery in waste-to-energy plant[J]. Energy Conversion and Management, 2020, 226, 113511.
DOI |
15 | 王立舒, 白龙, 房俊龙, 等. 基于双曲正切函数的光伏/温差自适应MPPT控制策略研究[J]. 农业工程学报, 2021, 37 (16): 184- 191. |
WANG Lishu, BAI Long, FANG Junlong, et al. Self-adaptive photovoltaic/temperature difference MPPT control strategy based on hyperbolic tangent function[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (16): 184- 191. | |
16 | CALISE F, CAPPIELLO F L, D'ACCADIA M D, et al. Smart grid energy district based on the integration of electric vehicles and combined heat and power generation[J]. Energy Conversion and Management, 2021, 234 (8): 113932. |
17 | LI K W, GARRISON G, MOORE M, et al. An expandable thermoelectric power generator and the experimental studies on power output[J]. International Journal of Heat and Mass Transfer, 2020, 160, 120205. |
18 | CHEN M, LUND H, ROSENDAHL L A, et al. Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today's CHP systems[J]. Applied Energy, 2021, 87 (4): 1231- 1238. |
19 |
TORRECILLA M C, MONTECUCCO A, SIVITER, J, et al. Novel model and maximum power tracking algorithm for thermoelectric generators operated under constant heat flux[J]. Applied Energy, 2019, 256, 113930.
DOI |
20 | 韩鹏, 李银红, 何璇, 等. 结合量子粒子群算法的光伏多峰最大功率点跟踪改进方法[J]. 电力系统自动化, 2016, 40 (23): 101- 108. |
HAN Peng, LI Yinhong, HE Xuan, et al. Improved maximum power point tracking method for photovoltaic multi-peak based on quantum-behaved particle swarm optimization algorithm[J]. Automation of Electric Power Systems, 2016, 40 (23): 101- 108. | |
21 | REZK H, ELTAMALY A M. A comprehensive comparison of different MPPT techniques for photovoltaic systems[J]. Solar Energy, 2015, 112 (2): 1- 11. |
22 | 殷明慧, 蒯狄正, 李群, 等. 风机最大功率点跟踪的失效现象[J]. 中国电机工程学报, 2011, 31 (18): 40- 47. |
YIN Minghui, KUAI Dizheng, LI Qun, et al. A phenomenon of maximum power point tracking invalidity of wind turbines[J]. Proceedings of the CSEE, 2011, 31 (18): 40- 47. | |
23 | MUZATHIK A M, LANKA S. Photovoltaic modules operating temperature estimation using a simple correlation[J]. International Journal of Energy Engineering, 2014, 4 (4): 151. |
24 | BALATO M, COSTANZO L, LO SCHIAVO A, et al. Optimization of both perturb & observe and open circuit voltage MPPT techniques for resonant piezoelectric vibration harvesters feeding bridge rectifiers[J]. Sensors and Actuators A Physical, 2018, 278: 85-97. |
25 | REZK H, FATHY A, ABDELAZIZ A Y. A comparison of different global MPPT techniques based on meta-heuristic algorithms for photovoltaic system subjected to partial shading condition[J]. Renewable and Sustainable Energy Reviews, 2017, 74, 377- 386. |
26 |
ZAKI DIAB A A, REZK H. Global MPPT based on flower pollination and differential evolution algorithms to mitigate partial shading in building integrated PV system[J]. Solar Energy, 2017, 157, 171- 186.
DOI |
27 | MOHAMED M A, ZAKI DIAB A A, REZK H. Partial shading mitigation of PV systems via different meta-heuristic techniques[J]. Renewable Energy, 2019, 130: 1159–1175. |
28 |
FARIS H, MAFARJA M M, HEIDARI A A, et al. An efficient binary salp swarm algorithm with crossover scheme for feature selection problems[J]. Knowledge-Based Systems, 2018, 154, 43- 67.
DOI |
29 |
EL-FERGANY A. Extracting optimal parameters of PEM fuel cells using salp swarm optimizer[J]. Renewable Energy, 2018, 119, 641- 648.
DOI |
30 |
JATELY V, ARORA S. Development of a dual-tracking technique for extracting maximum power from PV systems under rapidly changing environmental conditions[J]. Energy, 2017, 133, 557- 571.
DOI |
31 |
LI X S, WEN H Q, HU Y H, et al. Modified beta algorithm for GMPPT and partial shading detection in photovoltaic systems[J]. IEEE Transactions on Power Electronics, 2018, 33 (3): 2172- 2186.
DOI |
[1] | 成云朋, 李建华, 蔡寿国, 张学波, 王永, 陆晔, 朱瑛. 考虑损耗的永磁风力发电系统改进功率反馈法最大风能跟踪控制[J]. 中国电力, 2023, 56(10): 62-70. |
[2] | 薛飞, 马鑫, 田蓓, 吴慧. 基于改进蜻蜓算法的光伏全局最大功率追踪[J]. 中国电力, 2022, 55(2): 131-137. |
[3] | 林祺蓉,王俏俏,林祺蔚,林琳,董晨晖,刘红霞. 基于差分进化算法的阴影影响下光伏阵列MPPT控制研究[J]. 中国电力, 2015, 48(6): 39-44. |
[4] | 袁晓玲, 陈宇. 自适应权重粒子群算法在阴影光伏发电最大功率点跟踪(MPPT)中的应用[J]. 中国电力, 2013, 46(10): 85-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||