中国电力 ›› 2023, Vol. 56 ›› Issue (9): 134-139.DOI: 10.11930/j.issn.1004-9649.202302051

• 配电网规划与优化运行 • 上一篇    下一篇

配电网运行异常数据识别方法

林昱奂1, 郝方舟2, 李柏新1, 黄波1   

  1. 1. 广东电网有限责任公司广州番禺供电局,广东 广州 511400;
    2. 广州供电局有限公司,广东 广州 510006
  • 收稿日期:2023-02-14 修回日期:2023-08-09 发布日期:2023-09-20
  • 作者简介:林昱奂(1986-),男,工程师,从事配网运行管理、配网规划研究,E-mail:18988826878@139.com
  • 基金资助:
    广东电网有限责任公司广州番禺供电局科技项目(082700KK52200001);国家自然科学基金资助项目(51877061)。

Method for Identifying Abnormal Data in Distribution Network Operation

LIN Yuhuan1, HAO Fangzhou2, LI Baixin1, HUANG Bo1   

  1. 1. Guangzhou Panyu Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 511400, China;
    2. Guangzhou Power Supply Bureau Co., Ltd., Guangzhou 510006, China
  • Received:2023-02-14 Revised:2023-08-09 Published:2023-09-20
  • Supported by:
    This work is supported by Science and Technology Project of Guangzhou Panyu Power Supply Bureau of Guangdong Power Grid Co., Ltd. (No.082700KK52200001), National Natural Science Foundation of China (No.51877061).

摘要: 为提高配电网运行异常数据的识别准确率,提出结合k均值改进萤火虫算法的配电网运行异常数据识别方法。在配电网信息系统中采集配电网运行数据,并实施数据清洗、合并、特征化处理等操作。利用结合k均值改进萤火虫算法的优化聚类获取样本特征曲线及样本分类,得到带通矩阵来判定异常数据点,完成配电网运行异常数据识别。结果表明:所提方法对不同的用电设备状态组合的运行异常数据识别准确率更高。

关键词: 配电网运行异常数据, 异常识别, 萤火虫算法, 优化聚类

Abstract: In order to improve the recognition accuracy of abnormal data of distribution network operation, a novel method for identifying abnormal data of distribution network operation is proposed based on k-means improved firefly algorithm. Firstly, the distribution network operation data is collected in the distribution network information system, and such treatments as data cleansing, consolidation and characterization are performed. Then, the optimal clustering of the improved firefly algorithm based on k-means is used to obtain the sample characteristic curves and sample classification, and the band-pass matrix is obtained to determine the abnormal data points, so the identification of abnormal data of distribution network operation is completed. The results show that the proposed method has a higher accuracy in identifying abnormal operating data for different combinations of electrical equipment states.

Key words: abnormal data of distribution network operation, abnormal recognition, firefly algorithm, optimize clustering