中国电力 ›› 2023, Vol. 56 ›› Issue (12): 227-237.DOI: 10.11930/j.issn.1004-9649.202305031
收稿日期:
2023-05-08
接受日期:
2023-06-15
出版日期:
2023-12-28
发布日期:
2023-12-28
作者简介:
刘凌杰(1998—),男,硕士研究生,从事电力系统发电计划研究,E-mail: meliulj@163.com基金资助:
Received:
2023-05-08
Accepted:
2023-06-15
Online:
2023-12-28
Published:
2023-12-28
Supported by:
摘要:
现有合同电量分解方法大多没有考虑风电不确定性的影响及未与发电计划协同优化,导致到期合同电量往往未能够得到充分执行。提出一种考虑风电不确定性和检修计划影响的短期合同电量协同分解优化新模型及算法,使得到期时合同电量能够公平合理地充分执行。首先,以发电成本、合同偏差成本及风电品质风险成本最小为目标,构建短期合同电量分解到天的优化模型及算法,得到每天预计完成的合同电量。然后,基于日前及日内短期及超短期负荷及风功率预测信息,分别构建考虑合同完成度的日前鲁棒发电计划及日内重调度优化模型及算法,在保证对负荷尽可能供电及系统安全约束满足的前提下,实现风功率充分消纳及每日合同电量的充分执行。在此基础上,对每日未完成的合同电量,通过后续日合同电量的滚动修正进一步加以实现,从而保证到期时短期合同电量能够得到充分执行。算例证实了该模型及算法的可行性和先进性。
刘凌杰, 林济铿. 考虑风电不确定性的短期合同电量协同分解优化模型及算法[J]. 中国电力, 2023, 56(12): 227-237.
Lingjie LIU, Jikeng LIN. Model and Algorithm of Cooperative Optimization Decomposition for Short-Term Contract Electricity Considering Wind Power Uncertainty[J]. Electric Power, 2023, 56(12): 227-237.
图 2 考虑风电不确定性的短期合同电量协同优化分解流程
Fig.2 Flowchart for cooperative optimization decomposition of short-term contract electricity considering wind power uncertainty
编号 | 火电机组出力/MW | a | b | c | 检修日期 | |||||||
最小 | 最大 | |||||||||||
1 | 40 | 200 | 0 | 54.82 | 105.18 | |||||||
2 | 40 | 200 | 0 | 55.95 | 103.96 | |||||||
3 | 50 | 250 | 0 | 43.68 | 116.02 | 2014-01-02 |
表 1 签订合同的火电机组基本数据
Table 1 Parameters of thermal power units
编号 | 火电机组出力/MW | a | b | c | 检修日期 | |||||||
最小 | 最大 | |||||||||||
1 | 40 | 200 | 0 | 54.82 | 105.18 | |||||||
2 | 40 | 200 | 0 | 55.95 | 103.96 | |||||||
3 | 50 | 250 | 0 | 43.68 | 116.02 | 2014-01-02 |
模型 | 总成本/ 美元 | 低品质风功率 成本/美元 | 弃风率/ % | 风电场、火电机组 合同完成率 | ||||
1 | 3319207 | 42050 | 21,8 | 1、0.99;1、1、1 | ||||
2 | 4615299 | 622000 | 0,0 | 1.25、1.09; 0.92、0.92、0.92 |
表 2 短期合同电量分解结果对比
Table 2 Comparison of the decomposition results of short-term contract electricity by different methods
模型 | 总成本/ 美元 | 低品质风功率 成本/美元 | 弃风率/ % | 风电场、火电机组 合同完成率 | ||||
1 | 3319207 | 42050 | 21,8 | 1、0.99;1、1、1 | ||||
2 | 4615299 | 622000 | 0,0 | 1.25、1.09; 0.92、0.92、0.92 |
日期 | 电量 类型 | 日合同电量/(MW·h) | ||||||||||
火电 机组1 | 火电 机组2 | 火电 机组3 | 6658号 风电场 | 6661号 风电场 | ||||||||
1月1日 | 初始 | 2809 | 960 | 5100 | 2611 | 867 | ||||||
修正 | 2809 | 960 | 5100 | 2611 | 867 | |||||||
实际 | 2809 | 967 | 5100 | 2357 | 698 | |||||||
1月2日 | 初始 | 4800 | 2957 | 0 | 3704 | 1085 | ||||||
修正 | 4800 | 2956 | 0 | 3746 | 1113 | |||||||
实际 | 4760 | 2956 | 0 | 3746 | 1113 | |||||||
1月3日 | 初始 | 1197 | 4800 | 6000 | 300 | 291 | ||||||
修正 | 1205 | 4797 | 6000 | 342 | 319 | |||||||
实际 | 1205 | 4197 | 5616 | 320 | 267 | |||||||
1月4日 | 初始 | 960 | 1748 | 6000 | 1907 | 875 | ||||||
修正 | 967 | 1897 | 6095 | 1954 | 916 | |||||||
实际 | 967 | 1897 | 6000 | 1954 | 916 | |||||||
1月5日 | 初始 | 960 | 960 | 5253 | 2939 | 910 | ||||||
修正 | 967 | 1109 | 5380 | 2986 | 951 | |||||||
实际 | 967 | 1109 | 5380 | 2964 | 943 | |||||||
1月6日 | 初始 | 4691 | 4800 | 1200 | 1330 | 467 | ||||||
修正 | 4699 | 4949 | 1327 | 1388 | 511 | |||||||
实际 | 3224 | 4452 | 1327 | 1443 | 460 | |||||||
1月7日 | 初始 | 4385 | 3576 | 1200 | 2793 | 897 | ||||||
修正 | 5868 | 4222 | 1327 | 2796 | 993 | |||||||
实际 | 3622 | 4222 | 1327 | 2796 | 963 |
表 3 签订合同的火电机组、风电场7天的日合同电量
Table 3 The daily contract electricity of thermal power units and wind farms in 7 days
日期 | 电量 类型 | 日合同电量/(MW·h) | ||||||||||
火电 机组1 | 火电 机组2 | 火电 机组3 | 6658号 风电场 | 6661号 风电场 | ||||||||
1月1日 | 初始 | 2809 | 960 | 5100 | 2611 | 867 | ||||||
修正 | 2809 | 960 | 5100 | 2611 | 867 | |||||||
实际 | 2809 | 967 | 5100 | 2357 | 698 | |||||||
1月2日 | 初始 | 4800 | 2957 | 0 | 3704 | 1085 | ||||||
修正 | 4800 | 2956 | 0 | 3746 | 1113 | |||||||
实际 | 4760 | 2956 | 0 | 3746 | 1113 | |||||||
1月3日 | 初始 | 1197 | 4800 | 6000 | 300 | 291 | ||||||
修正 | 1205 | 4797 | 6000 | 342 | 319 | |||||||
实际 | 1205 | 4197 | 5616 | 320 | 267 | |||||||
1月4日 | 初始 | 960 | 1748 | 6000 | 1907 | 875 | ||||||
修正 | 967 | 1897 | 6095 | 1954 | 916 | |||||||
实际 | 967 | 1897 | 6000 | 1954 | 916 | |||||||
1月5日 | 初始 | 960 | 960 | 5253 | 2939 | 910 | ||||||
修正 | 967 | 1109 | 5380 | 2986 | 951 | |||||||
实际 | 967 | 1109 | 5380 | 2964 | 943 | |||||||
1月6日 | 初始 | 4691 | 4800 | 1200 | 1330 | 467 | ||||||
修正 | 4699 | 4949 | 1327 | 1388 | 511 | |||||||
实际 | 3224 | 4452 | 1327 | 1443 | 460 | |||||||
1月7日 | 初始 | 4385 | 3576 | 1200 | 2793 | 897 | ||||||
修正 | 5868 | 4222 | 1327 | 2796 | 993 | |||||||
实际 | 3622 | 4222 | 1327 | 2796 | 963 |
1 | 国家发展改革委. 关于2021年新能源上网电价政策有关事项的通知[EB/OL]. [2021-06-07](2023-04-27). http://www.gov.cn/zhengce/zhengceku/2021-06/11/content_5617297.htm. |
2 | 国家发展改革委, 国家能源局. 关于做好2023年电力中长期合同签订履约工作的通知[EB/OL]. [2022-12-02](2023-04-27). https://www.ndrc.gov.cn/xxgk/zcfb/tz/202212/t20221222_1343756.html?code=&state=123. |
3 |
赵建立, 向佳霓, 汤卓凡, 等. 虚拟电厂在上海的实践探索与前景分析[J]. 中国电力, 2023, 56 (2): 1- 13.
DOI |
ZHAO Jianli, XIANG Jiani, TANG Zhuofan, et al. Practice exploration and prospect analysis of virtual power plant in Shanghai[J]. Electric Power, 2023, 56 (2): 1- 13.
DOI |
|
4 |
张书盈, 励刚, 滕晓毕, 等. 计划与市场并存的日发电计划模型构建与分析[J]. 中国电力, 2022, 55 (1): 151- 158.
DOI |
ZHANG Shuying, LI Gang, TENG Xiaobi, et al. Modeling and analysis of daily generation schedule considering the coexistence of planned electricity and market trading electricity[J]. Electric Power, 2022, 55 (1): 151- 158.
DOI |
|
5 | 姜曼, 司马琪, 鲍玉昆, 等. 考虑可再生能源消纳责任权重的年度合同电量月度分解方法[J]. 电力系统自动化, 2021, 45 (16): 208- 215. |
JIANG Man, SIMA Qi, BAO Yukun, et al. Monthly decomposition method of annual contract considering responsibility weight of renewable energy accommodation[J]. Automation of Electric Power Systems, 2021, 45 (16): 208- 215. | |
6 | 刘军, 龚建荣, 孙瑜, 等. 考虑风电不确定性的中长期合同电量分解[J]. 电力科学与技术学报, 2021, 36 (3): 84- 91. |
LIU Jun, GONG Jianrong, SUN Yu, et al. Mid-long term contract energy decomposition considering wind power uncertainty[J]. Journal of Electric Power Science and Technology, 2021, 36 (3): 84- 91. | |
7 | 董京营, 高红均, 刘俊勇, 等. 风电接入下的时序渐进滚动修正调度模型[J]. 可再生能源, 2017, 35 (11): 1711- 1718. |
DONG Jingying, GAO Hongjun, LIU Junyong, et al. The gradually time-sequential rolling revising dispatch model with wind power integration[J]. Renewable Energy Resources, 2017, 35 (11): 1711- 1718. | |
8 | 赵书强, 胡利宁, 田捷夫, 等. 基于中长期风电光伏预测的多能源电力系统合约电量分解模型[J]. 电力自动化设备, 2019, 39 (11): 13- 19. |
ZHAO Shuqiang, HU Lining, TIAN Jiefu, et al. Contract power decomposition model of multi-energy power system based on mid-long term wind power and photovoltaic electricity forecasting[J]. Electric Power Automation Equipment, 2019, 39 (11): 13- 19. | |
9 | 张高航, 李凤婷. 基于风电场运行特性的月度合同电量编制方法[J]. 中国电力, 2019, 52 (7): 177- 184. |
ZHANG Gaohang, LI Fengting. Monthly contract electricity compilation method based on wind farm operation characteristics[J]. Electric Power, 2019, 52 (7): 177- 184. | |
10 | 喻洁, 张彤彤, 丁恰, 等. 考虑清洁能源消纳的售电商滚动修正月度市场交易策略[J]. 电力自动化设备, 2021, 41 (9): 240- 247. |
YU Jie, ZHANG Tongtong, DING Qia, et al. Power retailers' rolling correction trading strategy in monthly market considering clean energy accommodation[J]. Electric Power Automation Equipment, 2021, 41 (9): 240- 247. | |
11 | 李佳宇. 考虑需求响应的售电商购售电交易优化模型研究[D]. 北京: 华北电力大学, 2020. |
LI Jiayu. Research on the optimization model of purchase and sale of electricity retailers considering demand response[D]. Beijing: North China Electric Power University, 2020. | |
12 | 邢通. 大规模风电参与电力市场交易机制及优化模型研究[D]. 北京: 华北电力大学, 2020. |
XING Tong. The research on the transaction mechanism and optimization mode for large scale wind power participating in the power market[D]. Beijing: North China Electric Power University, 2020. | |
13 |
ZHANG M L, FANG J K, AI X M, et al. Feasibility identification and computational efficiency improvement for two-stage RUC with multiple wind farms[J]. IEEE Transactions on Sustainable Energy, 2020, 11 (3): 1669- 1678.
DOI |
14 | 李鹏飞, 侯验秋, 邹佳芯, 等. 采用置信度风险测度的鲁棒发电计划模型及算法[J]. 中国电力, 2020, 53 (12): 190- 197. |
LI Pengfei, HOU Yanqiu, ZOU Jiaxin, et al. Model and algorithm of the robust generation schedule based on confidence risk measurement[J]. Electric Power, 2020, 53 (12): 190- 197. | |
15 | 吴刚, 刘俊勇, 向月, 等. 计及中长期合同电量分解和风电不确定性的电-气综合能源系统日前优化调度[J]. 电力自动化设备, 2019, 39 (8): 246- 253. |
WU Gang, LIU Junyong, XIANG Yue, et al. Day-ahead optimal scheduling of integrated electricity and natural gas system with medium-and long-term electricity contract decomposition and wind power uncertainties[J]. Electric Power Automation Equipment, 2019, 39 (8): 246- 253. | |
16 | 汪洋, 苏峰, 邓立, 等. 考虑机组合同电量完成动态均衡的日内安全经济调度[J]. 中国电力, 2016, 49 (9): 125- 129, 136. |
WANG Yang, SU Feng, DENG Li, et al. Dynamic intraday rolling scheduling considering electricity quantity progress[J]. Electric Power, 2016, 49 (9): 125- 129, 136. | |
17 | 李慧, 于德鳌, 范新桥, 等. 含大用户直购电的风火储联合环境经济调度[J]. 电力科学与技术学报, 2022, 37 (3): 3- 11. |
LI Hui, YU Deao, FAN Xinqiao, et al. Environmental economic dispatch for wind-thermal-storage system with direct power purchasing from large consumers[J]. Journal of Electric Power Science and Technology, 2022, 37 (3): 3- 11. | |
18 | 万庆祝, 刘伟娜. 考虑风荷不确定性的大用户直购电鲁棒区间优化调度[J]. 太阳能学报, 2022, 43 (7): 347- 355. |
WAN Qingzhu, LIU Weina. Direct power purchase by large consumers considering wind load uncertainty robust interval optimal scheduling[J]. Acta Energiae Solaris Sinica, 2022, 43 (7): 347- 355. | |
19 | 张一清. 计及光热电站中长期合约电量优化调度策略研究[D]. 南京: 东南大学, 2020. |
ZHANG Yiqing. Optimal dispatch strategy of longterm and mid-term contracts for concentrating solar power[D]. Nanjing: Southeast University, 2020. | |
20 |
WAN C, LIN J, WANG J H, et al. Direct quantile regression for nonparametric probabilistic forecasting of wind power generation[J]. IEEE Transactions on Power Systems, 2017, 32 (4): 2767- 2778.
DOI |
21 |
WANG J Z, WANG S, LI Z W. Wind speed deterministic forecasting and probabilistic interval forecasting approach based on deep learning, modified tunicate swarm algorithm, and quantile regression[J]. Renewable Energy, 2021, 179, 1246- 1261.
DOI |
22 |
ZHANG Z S, SUN Y Z, GAO D W, et al. A versatile probability distribution model for wind power forecast errors and its application in economic dispatch[J]. IEEE Transactions on Power Systems, 2013, 28 (3): 3114- 3125.
DOI |
23 |
GANGER D, ZHANG J S, VITTAL V. Statistical characterization of wind power ramps via extreme value analysis[J]. IEEE Transactions on Power Systems, 2014, 29 (6): 3118- 3119.
DOI |
24 | 曹胡辉, 裘智峰, 向劲勇, 等. 考虑中长期交易与短期调度衔接的风电消纳模型[J]. 电网技术, 2020, 44 (11): 4200- 4210. |
CAO Huhui, QIU Zhifeng, XIANG Jinyong, et al. Wind power accommodation model considering the link of medium and long-term transactions with short-term dispatch[J]. Power System Technology, 2020, 44 (11): 4200- 4210. | |
25 | 姚建国, 杨胜春, 王珂, 等. 平衡风功率波动的需求响应调度框架与策略设计[J]. 电力系统自动化, 2014, 38 (9): 85- 92. |
YAO Jianguo, YANG Shengchun, WANG Ke, et al. Framework and strategy design of demand response scheduling for balancing wind power fluctuation[J]. Automation of Electric Power Systems, 2014, 38 (9): 85- 92. |
[1] | 易文飞, 朱卫平, 郑明忠. 计及数据中心和风电不确定性的微电网经济调度[J]. 中国电力, 2024, 57(2): 19-26. |
[2] | 王志成, 王秀丽, 王帅. 考虑实时市场平衡费用的含风电日前市场电能-备用联合出清模型[J]. 中国电力, 2020, 53(9): 19-27. |
[3] | 李鹏飞, 侯验秋, 邹佳芯, 张舒捷, 李湃, 林济铿. 采用置信度风险测度的鲁棒发电计划模型及算法[J]. 中国电力, 2020, 53(12): 190-197. |
[4] | 张高航, 李凤婷. 基于风电场运行特性的月度合同电量编制方法[J]. 中国电力, 2019, 52(7): 177-184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||