中国电力 ›› 2023, Vol. 56 ›› Issue (11): 226-235.DOI: 10.11930/j.issn.1004-9649.202302007
收稿日期:
2023-02-01
出版日期:
2023-11-28
发布日期:
2023-11-28
作者简介:
伊超(1979—),男,高级工程师,从事电力技术研究与企业管理工作,E-mail: 12000091@ceic.com基金资助:
Chao YI1(), Da TENG2(
), Shaowei SONG1, Ou CHEN2
Received:
2023-02-01
Online:
2023-11-28
Published:
2023-11-28
Supported by:
摘要:
电站锅炉尾部烟气经湿法脱硫塔洗涤净化后达到湿饱和状态,直接排放会导致严重的水资源损失。以直接喷淋法烟气水分回收系统为研究对象,探讨了含湿饱和烟气特征参数,构建了集烟气脱硫、水分回收及深度减排的一体化装置,分析了烟气水分回收系统的运行性能及对污染物的深度减排效果。结果表明:饱和烟气含湿量随烟气温度变化较大,烟气温度越高对应的饱和含湿量越高;烟气冷凝水回收量受冷源介质影响较为明显,一体化装置烟气水分理论回收速率由烟气进出口含湿量与流量决定,实际回收速率高达453.62 t/天,实际回收效率最高为26.44%;同时该装置实现对烟尘排放质量浓度降低66%~80%、SO2排放质量浓度降低50%~60%。研究结果为烟气水分高效回收利用提供了工程借鉴与指导。
伊超, 滕达, 宋绍伟, 陈鸥. 喷淋法燃煤电站烟气冷凝水回收系统应用分析[J]. 中国电力, 2023, 56(11): 226-235.
Chao YI, Da TENG, Shaowei SONG, Ou CHEN. Application Analysis of Flue Gas Condensation Recovery in Coal-fired Power Plants by Spraying Method[J]. Electric Power, 2023, 56(11): 226-235.
煤种 | 全水分 Mt/% | 空气干燥基 水分Mad/% | 收到基灰分 Mar/% | 干燥无灰基 挥发分Vdaf/% | 收到基碳 Car/% | 收到基氢 Har/% | 收到基氮 Nar/% | 收到基氧 Oar/% | 全硫 St,ad/% | 高位发热量 Qgr,ar/(MJ·kg–1) | 低位发热量 Qnet,ar/(MJ·kg–1) | |||||||||||
神华煤 | 19.2 | 6.91 | 10.36 | 37.45 | 56.68 | 3.33 | 0.71 | 9.41 | 0.31 | 22.67 | 21.54 | |||||||||||
印尼煤 | 34.6 | 13.98 | 6.56 | 50.82 | 42.40 | 2.84 | 0.65 | 12.62 | 0.33 | 16.89 | 15.51 |
表 1 某典型350 MW燃煤机组煤质检测分析表
Table 1 The 350 MW coal-fired power plant coal testing analysis table
煤种 | 全水分 Mt/% | 空气干燥基 水分Mad/% | 收到基灰分 Mar/% | 干燥无灰基 挥发分Vdaf/% | 收到基碳 Car/% | 收到基氢 Har/% | 收到基氮 Nar/% | 收到基氧 Oar/% | 全硫 St,ad/% | 高位发热量 Qgr,ar/(MJ·kg–1) | 低位发热量 Qnet,ar/(MJ·kg–1) | |||||||||||
神华煤 | 19.2 | 6.91 | 10.36 | 37.45 | 56.68 | 3.33 | 0.71 | 9.41 | 0.31 | 22.67 | 21.54 | |||||||||||
印尼煤 | 34.6 | 13.98 | 6.56 | 50.82 | 42.40 | 2.84 | 0.65 | 12.62 | 0.33 | 16.89 | 15.51 |
脱硫区 | 脱水区 | |||||||||||||||||||
烟气体积分数/% | 烟气流量/(m3·h–1) | 烟气温度/℃ | 污染物质量浓度/(mg·m–3) | 烟气温度/℃ | ||||||||||||||||
N2 | CO2 | H2O | O2 | SO2 | SO2 | SO3 | 粉尘 | |||||||||||||
71.14 | 12.77 | 11.23 | 4.82 | 0.04 | 1 220 000 | 95 | 1 400 | 20 | 20 | 52.3~52.6 |
表 2 喷淋法一体化装置入口烟气基本参数
Table 2 The flue gas inlet parameters of the integrated system
脱硫区 | 脱水区 | |||||||||||||||||||
烟气体积分数/% | 烟气流量/(m3·h–1) | 烟气温度/℃ | 污染物质量浓度/(mg·m–3) | 烟气温度/℃ | ||||||||||||||||
N2 | CO2 | H2O | O2 | SO2 | SO2 | SO3 | 粉尘 | |||||||||||||
71.14 | 12.77 | 11.23 | 4.82 | 0.04 | 1 220 000 | 95 | 1 400 | 20 | 20 | 52.3~52.6 |
检测项目 | 检测结果 | 检测项目 | 检测结果 | |||
总硬度 | 16.500 | 钙 | 1.800 | |||
溶解性总固体 | 474.000 | 镁 | 0.390 | |||
硫酸盐 | 253.000 | 砷 | 0.400×10–3 | |||
氟化物 | 0.237 | 汞 | <0.040×10–3 | |||
氯化物 | 20.500 | 铬 | <0.030 | |||
硝酸盐 | 0.272 | 铅 | <1.000×10–3 | |||
钾 | 0.230 | 锌 | <9.000×10–3 | |||
钠 | 110.000 | 铜 | <4.000×10–3 | |||
镉 | 0.300×10–3 | 钴 | <0.020 | |||
铁 | 0.470 | 镍 | <7.000×10–3 | |||
锰mg/L | <0.010 | 锑 | <0.070×10–3 |
表 3 燃煤电站烟气冷凝水取样水质
Table 3 The flue gas condensation water quality analysis from coal-fired power plant 单位:mg/L
检测项目 | 检测结果 | 检测项目 | 检测结果 | |||
总硬度 | 16.500 | 钙 | 1.800 | |||
溶解性总固体 | 474.000 | 镁 | 0.390 | |||
硫酸盐 | 253.000 | 砷 | 0.400×10–3 | |||
氟化物 | 0.237 | 汞 | <0.040×10–3 | |||
氯化物 | 20.500 | 铬 | <0.030 | |||
硝酸盐 | 0.272 | 铅 | <1.000×10–3 | |||
钾 | 0.230 | 锌 | <9.000×10–3 | |||
钠 | 110.000 | 铜 | <4.000×10–3 | |||
镉 | 0.300×10–3 | 钴 | <0.020 | |||
铁 | 0.470 | 镍 | <7.000×10–3 | |||
锰mg/L | <0.010 | 锑 | <0.070×10–3 |
1 | COHEN J, JANOVICH I, MUGINSTEIN A. Utilization of waste heat from a flue gases up-stream gas scrubbing system[J]. Desalination, 2001, 139 (1/2/3): 1- 6. |
2 | 赵宁, 冯永新, 林廷坤, 等. 脱硫废水旋转喷雾蒸发与旁路烟道蒸发特性研究[J]. 中国电力, 2022, 55 (7): 193- 200. |
ZHAO Ning, FENG Yongxin, LIN Tingkun, et al. Study of evaporation performance between centrifugal spray evaporation and bypass flue evaporation to treat desulfurization wastewater[J]. Electric Power, 2022, 55 (7): 193- 200. | |
3 |
XIONG Y Y, NIU Y Q, TAN H Z, et al. Experimental study of a zero water consumption wet FGD system[J]. Applied Thermal Engineering, 2014, 63 (1): 272- 277.
DOI |
4 | 高原, 辛志强, 姜涌. 余热回收装置对湿法烟气脱硫系统水量平衡影响分析[J]. 电站系统工程, 2013, 29 (3): 77- 78. |
GAO Yuan, XIN Zhiqiang, JIANG Yong. Influence analysis of waste heat recovery on water balance of wet-FGD system[J]. Power System Engineering, 2013, 29 (3): 77- 78. | |
5 | SHUSTER E, HOESLY R, PIZEL A, et al. Estimating fresh water needs to meet future thermoelectric generation requirements and program water saving benefits–2022 update[R]. United Sates: Nation Energy Technology Laboratory, 2006. |
6 |
HAN X Q, YAN J J, KARELLAS S, et al. Water extraction from high moisture lignite by means of efficient integration of waste heat and water recovery technologies with flue gas pre-drying system[J]. Applied Thermal Engineering, 2017, 110, 442- 456.
DOI |
7 | 朱晓磊, 张磊, 孟继安. 烟气余热回收中填料喷淋换热器的实验分析[J]. 工程热物理学报, 2020, 41 (12): 3061- 3067. |
ZHU Xiaolei, ZHANG Lei, MENG Jian. Experimental analysis of packed spraying heat exchanger in waste heat recovery from flue gas[J]. Journal of Engineering Thermophysics, 2020, 41 (12): 3061- 3067. | |
8 |
徐承美, 谢英柏, 弓学敏. 燃煤锅炉烟气余热利用途径分析[J]. 热能动力工程, 2020, 35 (8): 151- 157.
DOI |
XU Chengmei, XIE Yingbai, GONG Xuemin. Analysis on waste heat utilization way of flue gas in coal-fired boiler[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35 (8): 151- 157.
DOI |
|
9 |
路源, 徐震, 肖云汉. 开式吸收式热泵内冷型吸收器的实验研究[J]. 太阳能学报, 2012, 33 (3): 368- 373.
DOI |
LU Yuan, XU Zhen, XIAO Yunhan. Experimental study on the internally-cooled absorber in open cycle absorption heat pump[J]. Acta Energiae Solaris Sinica, 2012, 33 (3): 368- 373.
DOI |
|
10 |
ZHANG H, DONG Y, LAI Y H, et al. Waste heat recovery from coal-fired boiler flue gas: performance optimization of a new open absorption heat pump[J]. Applied Thermal Engineering, 2021, 183, 116111.
DOI |
11 |
陈海平, 谢天, 杨博然, 等. 火电厂烟气水分及余热陶瓷膜法回收实验[J]. 热力发电, 2018, 47 (11): 46- 52.
DOI |
CHEN Haiping, XIE Tian, YANG Boran, et al. Water and waste heat recovery from flue gas of thermal power plants: using ceramic membrane method[J]. Thermal Power Generation, 2018, 47 (11): 46- 52.
DOI |
|
12 |
CHENG C, LIANG D H, ZHANG Y T, et al. Pilot-scale study on flue gas moisture recovery in a coal-fired power plant[J]. Separation and Purification Technology, 2021, 254, 117254.
DOI |
13 |
RIFFAT S B, ZHAO X, DOHERTY P S. Application of sorption heat recovery systems in heating appliances-feasibility study[J]. Applied Thermal Engineering, 2006, 26 (1): 46- 55.
DOI |
14 | 周亚男. 水蒸气在复合膜中的跨膜传质传热机理研究[D]. 北京: 华北电力大学(北京), 2018. |
ZHOU Yanan. Mechanism of mass and heat transfer for water vapor transporting through composite membranes[D]. Beijing: North China Electric Power University, 2018. | |
15 |
包文运, 马利君, 赵晓丹, 等. 膜法除湿技术研究进展及应用现状[J]. 应用化工, 2019, 48 (6): 1428- 1432.
DOI |
BAO Wenyun, MA Lijun, ZHAO Xiaodan, et al. Research progress and application of membrane dehumidification technology[J]. Applied Chemical Industry, 2019, 48 (6): 1428- 1432.
DOI |
|
16 |
CHEN H P, ZHOU Y N, SU X, et al. Experimental study of water recovery from flue gas using hollow micro–nano porous ceramic composite membranes[J]. Journal of Industrial and Engineering Chemistry, 2018, 57, 349- 355.
DOI |
17 |
LIANG Y B, CHE D F, KANG Y B. Effect of vapor condensation on forced convection heat transfer of moistened gas[J]. Heat and Mass Transfer, 2007, 43 (7): 677- 686.
DOI |
18 |
WEI H Y, HUANG S F, ZHANG X S. Experimental and simulation study on heat and mass transfer characteristics in direct-contact total heat exchanger for flue gas heat recovery[J]. Applied Thermal Engineering, 2022, 200, 117657.
DOI |
19 |
THIYAGU S, NAVEEN T K, SIDDHARTHAN B, et al. Numerical investigation and performance enhancement of 210 MW boiler by utilization of waste heat in flue gas[J]. Materials Today:Proceedings, 2020, 33, 756- 762.
DOI |
20 | 张志勇, 莫华, 王猛, 等. 600 MW燃煤机组烟气污染物控制研究[J]. 中国电力, 2022, 55 (5): 204- 210. |
ZHANG Zhiyong, MO Hua, WANG Meng, et al. Study of flue gas pollutant control in a 600MW coal-fired unit[J]. Electric Power, 2022, 55 (5): 204- 210. | |
21 |
PAN P Y, CHEN H, LIANG Z Y, et al. Deposition and corrosion characteristics of liquid-solid droplets on tubular corrosion probes in desulfurized flue gas[J]. Engineering Failure Analysis, 2018, 90, 129- 140.
DOI |
22 |
VERMA P, YANG Z W. A direct contact cooler design for simultaneously recovering latent heat and capturing SOx and NOx from pressurized flue gas [J]. Energy Conversion and Management, 2022, 254, 115216.
DOI |
23 | 李锋, 端木琳, 付林, 等. 烟气-水直接接触式换热性能研究[J]. 暖通空调, 2017, 47 (12): 91- 96. |
LI Feng, DUANMU Lin, FU Lin, et al. Flue gas-water direct-contact heat transfer performances[J]. Heating Ventilating & Air Conditioning, 2017, 47 (12): 91- 96. | |
24 | 马文嘉. 富氧燃烧电站直接接触式烟气冷凝器系统研究[D]. 武汉: 华中科技大学, 2016. |
MA Wenjia. Research on oxy-fuel combustion power station with direct contact flue gas condenser system[D]. Wuhan: Huazhong University of Science and Technology, 2016. | |
25 | 范立民, 寇贵德, 侯飞龙. 榆神低硫煤中硫含量特征及成因探讨[J]. 中国煤炭地质, 2003, 15 (2): 12- 13. |
FAN Limin, KOU Guide, HOU Feilong. Probe into features and geneses of sulfur content in low-sulfur coal of yushen mining area[J]. Coal Geology of China, 2003, 15 (2): 12- 13. | |
26 |
杨建国, 许明路, 陈永辉, 等. 燃煤电厂烟气冷凝法水回收试验研究[J]. 动力工程学报, 2020, 40 (4): 342- 348.
DOI |
YANG Jianguo, XU Minglu, CHEN Yonghui, et al. Experimental study on water recovery from flue gas condensation in coal fired power plants[J]. Journal of Chinese Society of power Engineering, 2020, 40 (4): 342- 348.
DOI |
|
27 | 王述浩, 李水清, 段璐, 等. 相变凝聚器内蒸汽凝结与细颗粒团聚规律研究[J]. 中国电机工程学报, 2017, 37 (24): 7230- 7236, 7437. |
WANG Shuhao, LI Shuiqing, DUAN Lu, et al. Study on the coagulation of vapor condensates and fine particulates in a phase-change agglomerator[J]. Proceedings of the CSEE, 2017, 37 (24): 7230- 7236, 7437. | |
28 |
熊英莹, 王自宽, 张方炜, 等. 零水耗烟气湿法脱硫系统试验研究[J]. 热力发电, 2014, 43 (3): 43- 46, 51.
DOI |
XIONG Yingying, WANG Zikuan, ZHANG Fangwei, et al. Experimental study on a zero water consumption FGD system[J]. Thermal Power Generation, 2014, 43 (3): 43- 46, 51.
DOI |
|
29 |
雷承勇, 王恩禄, 黄晓宇, 等. 燃煤电站烟气水分回收技术试验研究[J]. 锅炉技术, 2011, 42 (1): 5- 8, 22.
DOI |
LEI Chengyong, WANG Enlu, HUANG Xiaoyu, et al. Experiment study on recovery of water steam in the flue gas of brown coal-fired power plant[J]. Boiler Technology, 2011, 42 (1): 5- 8, 22.
DOI |
|
30 |
杨亦擎, 姜未汀, 潘卫国, 等. 基于泡沫铜翅片换热器的烟气水分回收实验研究[J]. 热能动力工程, 2020, 35 (2): 213- 218.
DOI |
YANG Yiqing, JIANG Weiting, PAN Weiguo, et al. Experimental study on flue gas moisture recovery based on foamed copper fin heat exchanger[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35 (2): 213- 218.
DOI |
|
31 |
TENG D, JIA X X, YANG W K, et al. Experimental investigation into flue gas water and waste heat recovery using a purge gas ceramic membrane condenser[J]. ACS Omega, 2022, 7 (6): 4956- 4969.
DOI |
32 |
TENG D, AN L S, SHEN G Q, et al. Experimental study on a ceramic membrane condenser with air medium for water and waste heat recovery from flue gas[J]. Membranes, 2021, 11 (9): 701.
DOI |
33 | 高兴林. 火电厂烟气排放流量实时测量装置研究[D]. 北京: 华北电力大学(北京), 2019. |
GAO Xinglin. Research on real-time measuring device for flue gas emission flow in power plant[D]. Beijing: North China Electric Power University, 2019. | |
34 |
俞峰苹, 李清毅, 赵金龙, 等. 选择性催化还原烟气脱硝系统烟气流量在线测量方法[J]. 热力发电, 2016, 45 (2): 101- 104, 109.
DOI |
YU Fengping, LI Qingyi, ZHAO Jinlong, et al. Online measurement methods for flue gas flow in SCR denitrification system[J]. Thermal Power Generation, 2016, 45 (2): 101- 104, 109.
DOI |
|
35 |
谢春霞, 邹向群. 回用水用于湿法脱硫系统工艺水的水质要求[J]. 电力科技与环保, 2013, 29 (2): 23- 25.
DOI |
XIE Chunxia, ZOU Xiangqun. Water quality specification of reclaimed water used as process water of flue gas desulphurization system[J]. Electric Power Technology and Environmental Protection, 2013, 29 (2): 23- 25.
DOI |
[1] | 刘广建, 岳凤站, 周硕, 王琳, 干雪. 燃煤电厂水平衡模型与节水分析[J]. 中国电力, 2022, 55(4): 221-228. |
[2] | 米大斌, 郭江龙, 张衡. 陶瓷膜法的烟气水分及余热回收中试研究[J]. 中国电力, 2021, 54(4): 199-206. |
[3] | 蒋东方, 张冕, KHAN Izhar Hasan, 王超, 朱忠亮, 张乃强, 徐鸿. 电站低温给水系统腐蚀产物生成过程研究[J]. 中国电力, 2018, 51(5): 118-122,133. |
[4] | 赵莉, 刘宇, 吴洋文, 庄柯, 陆强. 燃煤烟气中零价汞的催化氧化理论研究进展[J]. 中国电力, 2018, 51(3): 170-176. |
[5] | 孙立娇, 叶治安, 胡特立, 李荣轩, 曹瑞雪, 王宏宾. 电厂工业废水处理后回用于脱硫工艺水的试验研究[J]. 中国电力, 2017, 50(9): 135-137. |
[6] | 赵大周,刘沛奇,何胜,郑文广. 燃煤电站SCR烟气脱硝CFD技术的研究进展[J]. 中国电力, 2016, 49(8): 157-161. |
[7] | 何金亮,金理鹏,卢承政,宋玉宝,梁俊杰,方朝君. 燃煤电站SCR烟气脱硝系统运行典型故障诊断[J]. 中国电力, 2016, 49(8): 148-153. |
[8] | 王康, 朱林, 刘涛, 庄柯, 姚杰, 侯深. SCR脱硝催化剂检测与性能评价实验平台的设计与建设[J]. 中国电力, 2016, 49(7): 157-161. |
[9] | 贺栋红. 火电厂SCR脱硝系统氨管道污堵治理及优化控制[J]. 中国电力, 2016, 49(6): 161-165. |
[10] | 刘振,李清海,马智鑫,张衍国,TAN Zhongchao. 反应条件对六氨合钴同时脱硫脱硝效果的影响[J]. 中国电力, 2016, 49(10): 119-122. |
[11] | 王喜平,杜蕾. 基于实物期权的燃煤电站CCS投资决策研究[J]. 中国电力, 2015, 48(7): 101-107. |
[12] | 李德波, 廖永进, 徐齐胜, 杨青山. 燃煤电站SCR脱硝催化剂更换策略研究[J]. 中国电力, 2014, 47(3): 155-159. |
[13] | 李德波, 廖永进, 陆继东, 徐齐胜, 扬青山. 燃煤电站SCR催化剂更换周期及策略优化数学模型[J]. 中国电力, 2013, 46(12): 118-121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||