[1] Guidelines for controlling flow-accelerated corrosion in fossil and combined cycle plants[R]. Palo Alto:EPRI, CA:2005. 1008082.
[2] 蒋东方, 白杨, 朱忠亮, 等. 超临界机组汽水系统腐蚀产物迁徙过程研究[J]. 中国腐蚀与防护学报, 2016, 36(4):343-348.JIANG Dongfang, BAI Yang, ZHU Zhongliang, et al Moving process of corrosion products in steam-water system of supercritical power units[J]. Journal of Chinese Society for Corrosion and Protection, 2016, 36(4):343-348.
[3] KAIN V. Flow accelerated corrosion:forms, mechanisms and case studies[J]. Procedia Engineering, 2014, 86:576-588.
[4] KAIN V, ROYCHOWDHURY S, MATHEW T, et al. Flow accelerated corrosion and its control measures for the secondary circuit pipelines in Indian nuclear power plants[J]. Journal of Nuclear Materials, 2008, 383(1):86-91.
[5] FUJIWARA K, DOMAE M, YONEDA K, et al. Model of physico-chemical effect on flow accelerated corrosion in power plant[J]. Corrosion Science, 2011, 53(11):3526-3533.
[6] FUJIWARA K, DOMAE M, YONEDA K, et al. Correlation of flow accelerated corrosion rate with iron solubility[J]. Nuclear Engineering and Design, 2011, 241(11):4482-4486.
[7] NAITOH M, UCHIDA S, KOSHIZUKA S, et al. Evaluation methods for corrosion damage of components in cooling systems of nuclear power plants by coupling analysis of corrosion and flow dynamics (I) major targets and development strategies of the evaluation methods[J]. Journal of Nuclear Science and Technology, 2008, 45(11):1116-1128.
[8] UCHIDA S, NAITOH M, UEHARA Y, et al. Evaluation methods for corrosion damage of components in cooling systems of nuclear power plants by coupling analysis of corrosion and flow dynamics (Ⅱ):evaluation of corrosive conditions in PWR secondary cooling system[J]. Journal of Nuclear Science and Technology, 2008, 45(12):1275-1286.
[9] Uchida S, Naitoh M, Uehara Y, et al. Evaluation methods for corrosion damage of components in cooling systems of nuclear power plants by coupling analysis of corrosion and flow dynamics (Ⅲ) evaluation of wall thinning rate with the coupled model of static electrochemical analysis and dynamic double oxide layer analysis[J]. Journal of Nuclear Science and Technology, 2009, 46(1):31-40.
[10] JIANGDF, XU H, KHAN IH, et al. Transport of corrosion products in the steam-water cycle of supercritical power plant[J]. Applied Thermal Engineering, 2017, 113:1164-1169.
[11] DOOLEY R B, CHEXAL V K. Flow-accelerated corrosion of pressure vessels in fossil plants[J]. International Journal of Pressure Vessels and Piping, 2000, 77(2/3):85-90.
[12] 伊成龙, 张乐福, 徐雪莲. P11钢在湿蒸汽中流动加速腐蚀性能的模拟与实验研究[J]. 原子能科学技术, 2013, 47(2):197-201.YI Chenglong, ZHANG Lefu, XU Xuelian. Research of flow accelerated corrosion of P11 in wet steam[J]. Atomic Energy Science and Technology, 2013, 47(2):197-201.
[13] 张国军. 电站汽水系统流动加速腐蚀机理及对策研究[D]. 北京:华北电力大学, 2014.
[14] 陈艳慧, 彭志珍, 尹芹. Davis-Besse核电厂流动加速腐蚀失效事件反馈及共模特性分析[J]. 全面腐蚀控制, 2016(12):57-60.CHEN Yanhui, PENG Zhizhen, YIN Qin. Experience feedback on the flow Accelerated corrosion at Davis-Besse nuclear power plant and Co-model analysis[J]. Total Corrosion Control, 2016(12):57-60.
[15] 李俊菀, 曹杰玉, 刘玮, 等. 改进型低氧处理精确加氧技术在超超临界机组的应用[J]. 中国电力, 2016, 49(11):149-152.LI Junwan, CAO Jieyu, LIU Wei, et al. Application of improved oxygenated treatment on ultra-supercritical unit with precise low oxygen content dosing technology[J] Electric Power, 2016, 49(11):149-152.
[16] MILLETT P J, FENTON J M. High-temperature, aqueous-phase diffusion of NaCl through simulated deposits of corrosion products[J]. Corrosion, 1993, 49(7):536-543.
[17] Bouchacourt M. Improvement of the errosion-corrosion mechanistic model:role of surface oxide film[J]. Water chemistry of nuclear reactor systems, 1992, 2:338-345.
[18] SANCHEZ-CALDERA L E, GRIFFITH P, RABINOWICZ E. The mechanism of corrosion-erosion in steam extraction lines of power stations[J]. Journal of engineering for gas turbines and power, 1988, 110:180-184.
[19] JOHARI J M C. Modelling corrosion for corrosion-product transport in CANDU reactors and PWRs[D]. Fredericton:University of New Brunswick, 1994.
[20] JIANG D F, XU H, DENG B, et al. Effect of oxygenated treatment on corrosion of the whole steam-water system in supercritical power plant[J]. Applied Thermal Engineering, 2016, 93:1248-1253.
[21] UTANOHARA Y, NAGAYA Y, NAKAMURA A, et al. Influence of local flow field on flow accelerated corrosion downstream from an orifice[J]. Journal of Power and Energy Systems, 2012, 6(1):18-33.
[22] EL-GAMMAL M, MAZHAR H, COTTON J S, et al. The hydrodynamic effects of single-phase flow on flow accelerated corrosion in a 90-degree elbow[J]. Nuclear Engineering and Design, 2010, 240(6):1589-1598. |