中国电力 ›› 2023, Vol. 56 ›› Issue (11): 128-133.DOI: 10.11930/j.issn.1004-9649.202305071

• 电网 • 上一篇    下一篇

基于改进自适应UKF算法的中压配电网鲁棒动态状态估计方法

田钧祥1(), 陈铁1(), 陈彬1,2   

  1. 1. 三峡大学 电气与新能源学院,湖北 宜昌 443002
    2. 湖北省输电线路工程技术研究中心,湖北 宜昌 443002
  • 收稿日期:2023-05-17 出版日期:2023-11-28 发布日期:2023-11-28
  • 作者简介:田钧祥(1994—),男,硕士研究生,从事配电网状态估计研究,E-mail: 945553383@qq.com
    陈铁(1975—),男,通信作者,硕士,副教授,从事水电站智能运维与仿真、故障诊断、人工智能等研究,E-mail: chent@ctgu.edu.com
  • 基金资助:
    国家自然科学青年基金资助项目(52107006);湖北省自然科学基金面上资助项目(2021CFB149)。

Robust Dynamic State Estimation Method for Medium Voltage Distribution Networks Based on Improved Adaptive UKF Algorithm

Junxiang TIAN1(), Tie CHEN1(), Bin CHEN1,2   

  1. 1. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
    2. Hubei Provincial Engineering Technology Research Center for Power Transmission Line, Yichang 443002, China
  • Received:2023-05-17 Online:2023-11-28 Published:2023-11-28
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.52107006) and Natural Science Foundation of Hubei Province (No.2021CFB149)

摘要:

针对中压配电网缺少实时量测、伪量测精度较低以及现有的动态状态估计(dynamic state estimation,DSE)方法均采用恒定系统处理状态过程噪声的问题,提出了一种基于改进自适应无迹卡尔曼滤波(unscented kalman filter,UKF)算法的中压配电网鲁棒DSE方法。首先,利用中压配电网变压器低压侧的智能电表量测和变压器模型,推导出等效中压量测以增强中压配网量测冗余度;然后,借鉴信号处理技术对系统状态过程噪声的协方差矩阵实时更新并融入UKF算法,以减轻状态预测和量测滤波的不确定性;最后,基于15节点中压配电网进行仿真。仿真结果表明:所提方法能够有效地进行中压配电网的动态状态估计,获取更为精确的态势感知信息。

关键词: 实时量测, 无迹卡尔曼滤波, 中压配电网, 动态状态估计

Abstract:

To address the issues of the lack of real-time measurement, low accuracy of pseudo measurement, and the assumption of constant system state process noise in existing dynamic state estimation (DSE) methods for medium voltage distribution networks, this paper proposes a robust DSE method for medium voltage distribution networks based on an improved adaptive unscented Kalman filter (UKF) algorithm. Firstly, the method uses the smart meter measurement and transformer model at the low voltage side of the distribution transformer in the medium voltage distribution network to derive the equivalent medium voltage measurement to enhance the measurement redundancy of the medium voltage distribution network. Then, this article draws on signal processing technology to update the covariance matrix of system state process noise in real-time and integrates it into the UKF algorithm to reduce the uncertainty of state prediction and measurement filtering, thus proposing a robust DSE method for medium voltage distribution networks based on the improved adaptive UKF algorithm. Finally, based on the constructed 15-buses medium voltage distribution network, simulation results show that the proposed method can effectively perform DSE on the medium voltage distribution network and obtain more accurate situational awareness information.

Key words: real time measurement, unscented kalman filter, medium voltage distribution network, dynamic state estimation