中国电力 ›› 2023, Vol. 56 ›› Issue (10): 133-144.DOI: 10.11930/j.issn.1004-9649.202305039

• 电网 • 上一篇    下一篇

考虑样本类内不平衡的CHPOA-DBN变压器故障诊断方法

王爽1,2(), 罗倩1,2(), 唐波1,2(), 姜岚1,2(), 李锦3()   

  1. 1. 三峡大学 电气与新能源学院,湖北 宜昌 443002
    2. 三峡大学 湖北省输电线路工程技术研究中心,湖北 宜昌 443002
    3. 国网湖北省电力有限公司超高压公司,湖北 武汉 430051
  • 收稿日期:2023-05-09 出版日期:2023-10-28 发布日期:2023-10-31
  • 作者简介:王爽(1987—),男,通信作者,博士,讲师,从事电力设备故障诊断与状态评估研究,E-mail: wsctp168@126.com
    罗倩(1998—),女,硕士研究生,从事电力设备故障诊断与状态评估研究,E-mail: luoqian19982021@163.com
    唐波(1978—),男,博士,教授,从事输变电工程电磁环境方向研究,E-mail: tangboemail@sina.com
    姜岚(1986—),男,博士,讲师,从事输电线路工程结构振动与控制研究,E-mail: jl@ctgu.edu.cn
    李锦(1985—),男,硕士,工程师,从事变电运维技术研究,E-mail: 573239771@qq.com
  • 基金资助:
    湖北省重点研发计划资助项目(2020BAB110);电力系统及大型发电设备安全控制与仿真国家重点实验室开放基金项目(SKLD21KM11)。

CHPOA-DBN Transformer Fault Diagnosis Method Considering Sample Within-Class Imbalance

Shuang WANG1,2(), Qian LUO1,2(), Bo TANG1,2(), Lan JIANG1,2(), Jin LI3()   

  1. 1. School of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
    2. Hubei Provincial Engineering Technology Research Center for Power Transmission Line, China Three Gorges University, Yichang 443002, China
    3. State Grid Hubei Extra High Voltage Company, Wuhan 430051, China
  • Received:2023-05-09 Online:2023-10-28 Published:2023-10-31
  • Supported by:
    This work is supported by Key Research and Development Projects of Hubei Province (No.2020BAB110) and Open Foundation Project of State Key Laboratory for Safety Control and Simulation of Power System and Large Power Generation Equipment (No.SKLD21KM11).

摘要:

为解决变压器故障样本类内不平衡与人为确定深度信念网络(deep belief network,DBN)的网络参数导致故障诊断精度低的问题,提出一种基于样本均衡和改进DBN的变压器故障诊断方法。首先,针对合成少数类过采样算法(synthesis minority oversampling technique,SMOTE)生成样本加剧类内不平衡的问题,提出基于改进K均值(improved K-means,IK-means)的IK-means SMOTE算法,据此得到类间、类内均衡的故障样本;其次,利用Tent混沌映射改进的鹈鹕优化算法(chaotic hybrid pelican optimization algorithm,CHPOA)对DBN的隐含层节点数、反向微调学习率寻优,构建CHPOA-DBN变压器故障诊断模型;最后,基于实验数据,分别将经典过采样算法、经典故障诊断模型与所提方法进行对比分析,结果表明:所提方法故障诊断准确率达到96.25%,可以为变压器故障样本不均衡条件下的故障智能诊断提供重要参考。

关键词: 变压器故障诊断, 类内不平衡, 样本均衡, Tent混沌映射, DBN网络参数寻优

Abstract:

In recent years, deep belief network (DBN) based transformer fault diagnosis methods have been developed. However, they share two prominent drawbacks, which are the low accuracy issue caused by the within-class imbalance of transformer faults samples and the artificial determination of the network parameters of deep belief network (DBN). In this paper, a transformer fault diagnosis method based on sample balance processing and improved DBN is proposed. Firstly, an improved K-means (IK-means) synthesis minority oversampling technique (SMOTE) algorithm is proposed to obtain within-class and between-class balanced fault samples. Then, the Tent chaotic map embedded chaotic hybrid pelican optimization algorithm (CHPOA) is developed to optimize the number of hidden layer nodes and reverse fine-tuning learning rate of DBN, and the CHPOA-DBN transformer fault diagnosis model is constructed. Finally, the classical oversampling algorithm, the classical fault diagnosis model and the proposed method are compared and analyzed, based on the experimental data, respectively. The results show that the fault diagnosis accuracy of the proposed method reaches 96.25 %, which provide an important reference for intelligent fault diagnosis under imbalanced fault samples of transformers.

Key words: transformer fault diagnosis, within-class imbalance, sample balance processing, Tent chaotic map, DBN network parameters optimization