[1] 董洁, 乔建强. “双碳”目标下先进煤炭清洁利用发电技术研究综述[J]. 中国电力, 2022, 55(8): 202–212 DONG Jie, QIAO Jianqiang. A review on advanced clean coal power generation technology under “carbon peaking and carbon neutrality” goal[J]. Electric Power, 2022, 55(8): 202–212 [2] 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2–11 KANG Chongqing, YAO Liangzhong. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 2–11 [3] 江涵, 岳程燕, 严兴煜, 等. 高比例可再生能源系统惯量约束对灵活性分析的影响研究[J]. 电力系统保护与控制, 2021, 49(18): 44–51 JIANG Han, YUE Chengyan, YAN Xingyu, et al. Influence of system inertia on flexibility resource analysis for an interconnection system with a high proportion of intermittent renewable energy[J]. Power System Protection and Control, 2021, 49(18): 44–51 [4] 景建龙, 翟红晓, 李凤兰. 预制舱变电站的技术对比及方案选择[J]. 能源与节能, 2018(3): 106–108 JING Jianlong, ZHAI Hongxiao, LI Fenglan. Technology comparison and scheme selection of prefabricated cabin substations[J]. Energy and Energy Conservation, 2018(3): 106–108 [5] 蔡晶, 许成昊, 林清如, 等. 预制舱式变电站设计及应用探索[J]. 广东电力, 2019, 32(8): 9–16 CAI Jing, XU Chenghao, LIN Qingru, et al. Design and application of prefabricated substation[J]. Guangdong Electric Power, 2019, 32(8): 9–16 [6] 石敏. 新一代智能变电站集成化二次设备关键技术的应用研究[D]. 北京: 华北电力大学(北京), 2016. SHI Min. Research on key technology application of integrated secondary equipment in next generation smart substation[D]. Beijing: North China Electric Power University, 2016. [7] 黄景亮, 郭魏凯. 高风沙环境下的预制舱防尘设计方案[J]. 电子技术与软件工程, 2018(14): 131 HUANG Jingliang, GUO Weikai. Dust-proof design scheme of prefabricated cabin in high wind-sand environment[J]. Electronic Technology & Software Engineering, 2018(14): 131 [8] 狄谦, 谢晓磊, 康雪晶, 等. 预制舱式模块化变电站关键技术研究[J]. 电气应用, 2019, 38(12): 57–61 DI Qian, XIE Xiaolei, KANG Xuejing, et al. Research on key technologies of prefabricated modular substation[J]. Electrotechnical Application, 2019, 38(12): 57–61 [9] 张永峰, 窦辉, 丁丽平, 等. 智能变电站预制舱噪声控制[J]. 中国科技信息, 2017(12): 54–55, 57 ZHANG Yongfeng, DOU Hui, DING Liping, et al. Noise control of prefabricated cabin in intelligent substation[J]. China Science and Technology Information, 2017(12): 54–55, 57 [10] 谭丽平, 邓庆红, 何银国, 等. 大型变电站预制舱噪声自动化抑制方法研究[J]. 自动化与仪器仪表, 2019(5): 157–160 TAN Liping, DENG Qinghong, HE Yinguo, et al. Research on automatic suppression method of prefabricated cabin noise in large substation[J]. Automation & Instrumentation, 2019(5): 157–160 [11] 陆朝阳, 李雪城, 刘广州, 等. 智能变电站预制舱防凝露技术研究[J]. 电气技术, 2020, 21(11): 66–70 LU Chaoyang, LI Xuecheng, LIU Guangzhou, et al. Research on anti-condensation technology for prefabricated cabin of smart substation[J]. Electrical Engineering, 2020, 21(11): 66–70 [12] 顾铭飞, 袁涤非. 二次设备预制舱毛细管式风道空调结合风机散热方案的研究[J]. 华电技术, 2017, 39(5): 27–29,77 GU Mingfei, YUAN Difei. Secondary device precast Bin capillary module duct air conditioner and fan composite radiating solution study[J]. Huadian Technology, 2017, 39(5): 27–29,77 [13] 祝德春, 范志刚, 吴明, 等. 新一代智能变电站预制舱热设计与舱内热环境数值模拟及评价[J]. 机械制造与自动化, 2017, 46(1): 126–130, 152 ZHU Dechun, FAN Zhigang, WU Ming, et al. Numerical simulation and evaluation of thermal environment and thermal design of precast chamber for new generation smart substation[J]. Machine Building & Automation, 2017, 46(1): 126–130, 152 [14] 张军, 张宇峰, 孟庆林, 等. 亚热带地区预制舱类工业建筑节能技术与设计策略[J]. 南方建筑, 2018(5): 114–120 ZHANG Jun, ZHANG Yufeng, MENG Qinglin, et al. Energy efficiency technologies and design strategies for prefabricated cabin-type industrial building in subtropical regions[J]. South Architecture, 2018(5): 114–120 [15] 孙建龙, 鲁东海. 基于预制舱的配送式智能变电站设计[J]. 江苏电机工程, 2014, 33(5): 43–47 SUN Jianlong, LU Donghai. Distribution-mode smart substation design based on prefabricated cabin[J]. Jiangsu Electrical Engineering, 2014, 33(5): 43–47 [16] 刘琴, 王易雯. 线路绝缘子非均匀染污方法及污闪特性[J]. 中国电力, 2019, 52(7): 84–91 LIU Qin, WANG Yiwen. Non-uniform pollution method and pollution flashover characteristics of transmission line insulators[J]. Electric Power, 2019, 52(7): 84–91 [17] 项恩新, 王科. 基于远程耦合法的绝缘子泄漏电流监测及局部放电识别[J]. 云南电力技术, 2020, 48(1): 225–231 XIANG Enxin, WANG Ke. Insulator leakage current monitoring and partial discharge identification based on remote coupling method[J]. Yunnan Electric Power, 2020, 48(1): 225–231 [18] 江秀臣, 安玲, 韩振东. 等值盐密现场测量方法的研究[J]. 中国电机工程学报, 2000, 20(4): 40–43, 49 JIANG Xiuchen, AN Ling, HAN Zhendong. Study on the method of ESDD on site measurement[J]. Proceedings of the CSEE, 2000, 20(4): 40–43, 49 [19] VITELLI M, TUCCI V, PETRARCA C. Temperature distribution along an outdoor insulator subjected to different pollution levels[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(3): 416–423. [20] 蔡骥然, 郑永康, 周振宇, 等. 智能变电站二次设备状态监测研究综述[J]. 电力系统保护与控制, 2016, 44(6): 148–154 CAI Jiran, ZHENG Yongkang, ZHOU Zhenyu, et al. A survey of research on secondary device condition monitoring in smart substation[J]. Power System Protection and Control, 2016, 44(6): 148–154 [21] 赵勤学, 杨俊杰, 楼志斌. 智能变电站安全在线监测系统设计[J]. 电测与仪表, 2017, 54(7): 34–40 ZHAO Qinxue, YANG Junjie, LOU Zhibin. Design of safety online monitoring system for smart substation[J]. Electrical Measurement & Instrumentation, 2017, 54(7): 34–40 [22] 王思华, 王军军, 赵磊, 等. 污秽成分对复合绝缘子表面电场的影响[J]. 中国电力, 2021, 54(7): 149–157 WANG Sihua, WANG Junjun, ZHAO Lei, et al. Influence of pollution components on surface electric field of composite insulators[J]. Electric Power, 2021, 54(7): 149–157 [23] 梁兴, 严居斌, 尹磊. 基于红外图像的输电线路故障识别[J]. 电测与仪表, 2019, 56(24): 99–103 LIANG Xing, YAN Jubin, YIN Lei. Fault identification of transmission lines based on infrared image[J]. Electrical Measurement & Instrumentation, 2019, 56(24): 99–103 [24] 王祖林, 黄涛, 刘艳, 等. 合成绝缘子故障的红外热像在线检测[J]. 电网技术, 2003, 27(2): 17–20 WANG Zulin, HUANG Tao, LIU Yan, et al. On-line inspection of defective composite insulators by infrared temperature measurement[J]. Power System Technology, 2003, 27(2): 17–20 [25] 江世艳, 王燕青, 徐越峰, 等. 基于灰色关联分析的电网安全事故关键致因分析[J]. 中国电力, 2021, 54(6): 168–174, 198 JIANG Shiyan, WANG Yanqing, XU Yuefeng, et al. Investigation of key causes for power grid safety events based on grey correlation analysis[J]. Electric Power, 2021, 54(6): 168–174, 198
|