[1] 钟崴, 郑立军, 俞自涛, 等. 基于“数字孪生”的智慧供热技术路线[J]. 华电技术, 2020, 42(11): 1–5 ZHONG Wei, ZHENG Lijun, YU Zitao, et al. Smart heat-supply roadmap based on digital twin[J]. Huadian Technology, 2020, 42(11): 1–5 [2] 李沛峰, 杨勇平, 陈玉勇, 等. 热电联产供热系统节能分析及改进[J]. 工程热物理学报, 2013, 34(8): 1411–1415 LI Peifeng, YANG Yongping, CHEN Yuyong, et al. Energy conservation analysis and improvement on combined heat and power heating system[J]. Journal of Engineering Thermophysics, 2013, 34(8): 1411–1415 [3] 国家发改委. “十四五”循环经济发展规划[EB/OL]. (2021-07-01) [2022-04-01]. http:// www.gov.cn/zhengce/zhengceku/2021-07/07/content_5623077.htm. [4] 李文涛, 袁卫星, 付林, 等. 汽轮机高背压供热方式能耗分析[J]. 区域供热, 2015, 177(4): 10–17 LI Wentao, YUAN Weixing, FU Lin, et al. Energy consumption analysis of high back pressure heating mode of steam turbine[J]. District Heating, 2015, 177(4): 10–17 [5] 戈志华, 杨佳霖, 何坚忍, 等. 大型纯凝汽轮机供热改造节能研究[J]. 中国电机工程学报, 2012, 32(17): 25–30,139 GE Zhihua, YANG Jialin, HE Jianren, et al. Energy saving research of heating retrofitting for large scale condensing turbine[J]. Proceedings of the CSEE, 2012, 32(17): 25–30,139 [6] 万燕, 孙诗梦, 戈志华, 等. 大型热电联产机组高背压供热改造全工况热经济分析[J]. 电力建设, 2016, 37(4): 131–137 WAN Yan, SUN Shimeng, GE Zhihua, et al. Thermo-economic analysis of high back pressure heating retrofit for large-scale cogeneration unit under full condition[J]. Electric Power Construction, 2016, 37(4): 131–137 [7] 戈志华, 孙诗梦, 万燕, 等. 大型汽轮机组高背压供热改造适用性分析[J]. 中国电机工程学报, 2017, 37(11): 3216–3222,3377 GE Zhihua, SUN Shimeng, WAN Yan, et al. Applicability analysis of high back-pressure heating retrofit for large-scale steam turbine unit[J]. Proceedings of the CSEE, 2017, 37(11): 3216–3222,3377 [8] 杨志平, 时斌, 李晓恩, 等. 热负荷分配比例对抽凝-背压供热机组能耗影响[J]. 化工进展, 2018, 37(3): 875–883 YANG Zhiping, SHI Bin, LI Xiaoen, et al. Impacts of heat load distribution ratio on energy consumption of extraction steam high back pressure heating cogeneration unit[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 875–883 [9] 冯澎湃, 王宁玲, 杨志平, 等. 直接空冷高背压供热机组的梯级供热特性与冷端变工况协同优化[J]. 中国电机工程学报, 2016, 36(20): 5546–5554,5731 FENG Pengpai, WANG Ningling, YANG Zhiping, et al. Cascade heating characteristics and off-design collaborative optimization of direct air-cooled high pressure heat supply power units[J]. Proceedings of the CSEE, 2016, 36(20): 5546–5554,5731 [10] 杨志平, 宋四明, 李维, 等. 耦合喷射器热电联产系统设计及运行优化[J]. 中国电机工程学报, 2020, 40(9): 2942–2951 YANG Zhiping, SONG Siming, LI Wei, et al. Design and operation optimization of combined heat and power system coupling with ejector[J]. Proceedings of the CSEE, 2020, 40(9): 2942–2951 [11] 杨志平, 冯澎湃, 王宁玲, 等. 质–量并行调节下直接空冷高背压供热机组弹性运行与优化[J]. 中国电机工程学报, 2017, 37(19): 5655–5664,5842 YANG Zhiping, FENG Pengpai, WANG Ningling, et al. Flexible operation and optimization of direct air-cooled high pressure heat supply power units in quality-volume regulation[J]. Proceedings of the CSEE, 2017, 37(19): 5655–5664,5842 [12] 李岩, 马懿峰, 李文涛. 湿冷机组乏汽余热利用的新型热电联产系统集成优化[J]. 中国电机工程学报, 2017, 37(19): 5688–5695,5846 LI Yan, MA Yifeng, LI Wentao. Integrated optimization of a new co-generation system based on waste heat recovery of water-cooled unit[J]. Proceedings of the CSEE, 2017, 37(19): 5688–5695,5846 [13] 李树山, 李刚, 程春田, 等. 动态机组组合与等微增率法相结合的火电机组节能负荷分配方法[J]. 中国电机工程学报, 2011, 31(7): 41–47 LI Shushan, LI Gang, CHENG Chuntian, et al. Thermal units' energy conservation load dispatch method with combining dynamic unit commitment into equal incremental principle[J]. Proceedings of the CSEE, 2011, 31(7): 41–47 [14] 王珊, 刘明, 严俊杰. 采用粒子群算法的热电厂热电负荷分配优化[J]. 西安交通大学学报, 2019, 53(9): 159–166 WANG Shan, LIU Ming, YAN Junjie. Optimizing heat-power load distribution of thermal power plants based on particle swarm algorithm[J]. Journal of Xi'an Jiaotong University, 2019, 53(9): 159–166 [15] 刘炳含, 付忠广, 王鹏凯, 等. 大数据挖据技术在燃煤电站机组能耗分析中的应用研究[J]. 中国电机工程学报, 2018, 38(12): 3578–3587 LIU Binghan, FU Zhongguang, WANG Pengkai, et al. Big data mining technology application in energy consumption analysis of coal-fired power plant units[J]. Proceedings of the CSEE, 2018, 38(12): 3578–3587 [16] 赵世飞. 燃煤高背压热电联产机组适用性研究[D]. 北京: 华北电力大学, 2020. ZHAO Shifei. Adaption research on coal-fired combined heat and power plant with high back-pressure turbine[D]. Beijing: North China Electric Power University, 2020. [17] 吴涛, 赖菲, 刘震, 等. 热电联产机组在深度调峰模式下的负荷智能分配[J]. 热力发电, 2021, 50(9): 119–127 WU Tao, LAI Fei, LIU Zhen, et al. Intelligent load distribution of cogeneration units in deep peak regulation mode[J]. Thermal Power Generation, 2021, 50(9): 119–127 [18] 李沛峰. 基于绿色供热的热电联产低温直供模式研究[D]. 北京: 华北电力大学, 2015. LI Peifeng. Research on low temperature district heating of combined heat and power based on green heating[D]. Beijing: North China Electric Power University, 2015. [19] 徐彤, 周云, 王新雷. 300 MW级热电联产机组调峰能力研究[J]. 中国电力, 2014, 47(9): 35–41 XU Tong, ZHOU Yun, WANG Xinlei. Research on peak regulation capability of 300 MW combined heat and power plant[J]. Electric Power, 2014, 47(9): 35–41 [20] 李健, 丁维栋, 杨志平, 等. 330 MW高背压热电联产机组运行优化分析[J/OL]. 华北电力大学学报(自然科学版): 1–11[2022-04-15]. http:// kns.cnki.net/kcms/detail/13.1212.TM.20220317.1612.002.html. LI Jian, DING Weidong, YANG Zhiping, et al. Operation and optimization analysis of 330 mw high back pressure cogeneration unit[J/OL]. Journal of North China Electric Power University (Natural Science Edition),1–11 [2022-04-15]. http://kns.cnki.net/kcms/detail/13. 1212.TM.20220317.1612.002.html. [21] 梁占伟, 张磊, 徐亚涛, 等. 双机联调抽汽-高背压联合供热?分析与优化[J]. 动力工程学报, 2020, 40(3): 247–255 LIANG Zhanwei, ZHANG Lei, XU Yatao, et al. Exergy analysis and optimization of steam extraction-high back pressure combined heating for dual cogeneration units[J]. Journal of Chinese Society of Power Engineering, 2020, 40(3): 247–255 [22] 高鹗, 刘鉴民. 热力发电厂[M]. 上海: 上海交通大学出版社, 1995.
|