中国电力 ›› 2021, Vol. 54 ›› Issue (5): 28-34,45.DOI: 10.11930/j.issn.1004-9649.202010054

• 国家“十三五”智能电网重大专项专栏:(七)电力信息通信新技术在能源互联网中的研究与应用专栏 • 上一篇    下一篇

基于计算卸载的电力物联网能效优化研究

刘世栋1,2, 卜宪德1,2, 刘川1,2, 田峰3   

  1. 1. 全球能源互联网研究院有限公司信息通信研究所,江苏 南京 210003;
    2. 国家电网公司电力通信网络技术实验室,江苏 南京 210003;
    3. 南京邮电大学 宽带无线通信与传感网技术教育部重点实验室,江苏 南京 210003
  • 收稿日期:2020-10-19 修回日期:2021-02-23 发布日期:2021-05-05
  • 作者简介:刘世栋(1971-),男,博士,高级工程师,从事电力物联网、软件定义网络、算力网络等领域研究,E-mail:2420493952@qq.com
  • 基金资助:
    国家电网公司科技项目(低时延安全可靠智能物联代理装置的研发及应用,SGZJDK00DYJS2000030)

Energy Efficiency Optimization Based on Computing Offloading for Internet of Things in Power Systems

LIU Shidong1,2, BU Xiande1,2, YU Qiang1,2, TIAN Feng3   

  1. 1. State Grid Laboratory of Electric Power Communication Network, Global Energy Interconnection Research Institute, Nanjing 210003, China;
    2. State Grid Laboratory of Electric Power Communication Network, Nanjing 210003, China;
    3. Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • Received:2020-10-19 Revised:2021-02-23 Published:2021-05-05
  • Supported by:
    This work is supported by the Science and Technology Projects of State Grid Corporation of China (Development and Application of Low-Delay Safe and Reliable Intelligent IoT Agent Device, No.SGZJDK00DYJS2000030)

摘要: 基于异构网络架构,考虑基于三层计算的电力物联网移动边缘计算架构,构建了各层计算的能量消耗模型和延迟模型,实现智能移动设备的任务从本地计算卸载到小基站的边缘服务器和宏基站边缘云服务器进行计算。针对电力物联网计算卸载的能耗最小化问题,采用变量替换分解问题,并利用目标函数单调性进行理论推导,得到优化的参数解。仿真结果表明,通过与其他方案相比,所提优化方案可以在较小的延迟条件下,实现优化的节能效果。

关键词: 电力物联网, 异构网络, 移动边缘计算, 计算卸载, 能效优化

Abstract: Based on the heterogeneous network architecture, in this paper by taking into account the mobile edge computing (MEC) architecture of Internet of things in power systems using three-tier computing, the energy consumption model and delay model are established respectively for each tier. Then the related tasks are offloaded from local computation in smart mobile device (SMD) to the MEC servers of small base station (SBS) and macro base station (MBS). To minimize the energy consumption due to the computing offloading, through variable substitution and decomposition, then by taking advantage of theoretical derivation based on the objective function monotonicity, the optimal solution is finally obtained. Simulation results show that, in comparison with other methods, the proposed scheme can achieve the effects of energy saving with less time delay.

Key words: Internet of Things in power system, heterogeneous network, mobile edge computing, computing offloading, energy-efficient optimization