[1] 张顺, 葛智平, 郭涛, 等. 大规模新能源接入后系统调峰能力与常规电源开机方式关系研究[J]. 电力系统保护与控制, 2016, 44(1): 106-110 ZHANG Shun, GEN Zhiping, GUO Tao, et al. Research on relationship between the capacity of systematic peak regulation and conventional power startup mode after access to large-scale new energy[J]. Power System Protection and Control, 2016, 44(1): 106-110 [2] 王颖, 林酉阔, 兰晓明, 等. 考虑随机波动性可再生能源的传统电源灵活性分析[J]. 电力建设, 2017, 38(1): 131-137 WANG Ying, LIN Youkuo, LAN Xiaoming, et al. Flexibility analysis of conventional generation with random fluctuation renewable energy[J]. Electric Power Construction, 2017, 38(1): 131-137 [3] 张顺. 火电机组的功率快速调节和深度调峰技术[D]. 兰州: 兰州理工大学, 2017. ZHANG Shun. Power fast adjustment and depth adjustment load of thermal power unit [D]. Lanzhou: Lanzhou University of Technology, 2017. [4] 国家能源局. 2018年度全国可再生能源电力发展监测评价报告[R]. 北京: 国家能源局, 2019. National Energy Administration. National monitoring and evaluation report on renewable energy and electricity development in 2018[R]. Beijing: National Energy Administration, 2019. [5] 牟春华, 居文平, 黄嘉驷, 等. 火电机组灵活性运行技术综述与展望[J]. 热力发电, 2018, 47(5): 1-7 MU Chunhua, JU Wenping, HUANG Jiasi, et al. Review and prospect of technologies of enhancing the flexibility of thermal power units[J]. Thermal Power Generation, 2018, 47(5): 1-7 [6] 王彩霞, 李梓仟, 李琼慧, 等. 丹麦新能源参与电力市场机制及对中国的启示[J]. 中国电力, 2018, 51(9): 143-150 WANG Caixia, LI Ziqian, LI Qionghui, et al. Participation mechanism of renewable energy in the electricity market in Denmark and its implications for China[J]. Electric Power, 2018, 51(9): 143-150 [7] 国家能源局. 正式启动提升火电灵活性改造示范试点工作[Z]. 北京: 国家能源局, 2016. National Energy Administration. Official start-up of demonstration pilot work to improve the flexibility of thermal power[Z]. Beijing: National Energy Administration, 2016. [8] 董信光, 孙健, 孔庆雨, 等. 超临界350 MW机组直流锅炉深度调峰能力试验[J]. 热力发电, 2018, 47(7): 105-112 DONG Xinguang, SUN Jian, KONG Qingyu, et al. Experimental study on depth peak-load regulation capacity of once-through boiler for a supercritical 350 MW unit[J]. Thermal Power Generation, 2018, 47(7): 105-112 [9] 华志刚, 周乃康, 袁建丽, 等. 燃煤供热机组灵活性提升技术路线研究[J]. 电站系统工程, 2018, 34(6): 9-12 HUA Zhigang, ZHOU Naikang, YUAN Jianli, et al. Review of state-of-the-art techniques for improving coal-fired CHP plant flexibility[J]. Power System Engineering, 2018, 34(6): 9-12 [10] 苏鹏, 王文君, 杨光, 等. 提升火电机组灵活性改造技术方案研究[J]. 中国电力, 2018, 51(5): 87-94 SU Peng, WANG Wenjun, YANG Guang, et al. Research on the technology to improve the flexibility of thermal power plants[J]. Electric Power, 2018, 51(5): 87-94 [11] 章良利, 李敏, 周晓蒙, 等. 深度调峰下燃煤机组运行方式对能耗的影响[J]. 中国电力, 2017, 50(7): 85-89 ZHANG Liangli, LI Min, ZHOU Xiaomeng, et al. Impact of the running modes of coal-fired units on energy consumption in in-depth peak load cycling[J]. Electric Power, 2017, 50(7): 85-89 [12] 赵永亮, 刁保圣, 韩翔, 等. 660 MW超临界燃煤机组变负荷过程动态特性的仿真研究[J]. 中国电力, 2019, 52(5): 13-20 ZHAO Yongliang, DIAO Baosheng, HAN Xiang, et al. Simulation study on the dynamic characteristics of a 660 MW supercritical coal-fired power unit during AGC processes[J]. Electric Power, 2019, 52(5): 13-20 [13] 高林, 王林, 刘畅, 等. 火电机组深度调峰热工控制系统改造[J]. 热力发电, 2018, 47(5): 95-100 GAO Lin, WANG Lin, LIU Chang, et al. Thermal control system retrofit for deep peak load regulation of thermal power unit[J]. Thermal Power Generation, 2018, 47(5): 95-100 [14] 张顺, 郭涛, 马呈霞, 等. 基于非线性与模糊控制的协调优化策略研究[J]. 自动化与仪器仪表, 2015(1): 1-3 ZHANG Shun, GUO Tao, MA Chengxia, et al. Nonlinear optimization strategy based on coordination and fuzzy control[J]. Automation & Instrumentation, 2015(1): 1-3 [15] 宫广正. 超临界火电机组运行灵活性提升控制策略研究及应用[J]. 中国电力, 2017, 50(8): 22-26 GONG Guangzheng. Research on and application of the control strategy for flexibility improvement of supercritical fossil-fired power units[J]. Electric Power, 2017, 50(8): 22-26 [16] LI J, LI W W. Application of load optimization control of thermal power unit based on the characteristics of regulating valve[J]. Journal of Physics: Conference Series, 2019, 1213: 052094. [17] SHAO Z, S I F Q, XU Z G. Modelling of thermal power unit target value based on hierarchical regression[J]. IOP Conference Series: Materials Science and Engineering, 2018, 452: 032075. [18] 郭涛, 葛智平, 张世才, 等. 330 MW循环流化床机组协调控制系统的特点分析与应用实例[J]. 电力科技与环保, 2012, 28(4): 56-58 GUO Tao, GE Zhiping, ZHANG Shicai, et al. Characteristic analysis of collaborative control system of 330 MW CFB units and its application[J]. Electric Power Technology and Environmental Protection, 2012, 28(4): 56-58 [19] 李媛, 张志强, 郑超, 等. 考虑光伏电站高渗透接入的火电机组一次调频参数优化[J]. 电力建设, 2017, 38(3): 115-122 LI Yuan, ZHANG Zhiqiang, ZHENG Chao, et al. Primary frequency parameter optimization of thermal power units considering high-penetration access of photovoltaic power plant[J]. Electric Power Construction, 2017, 38(3): 115-122 [20] 项群扬, 项文杰, 华敏, 等. 660 MW机组低负荷运行负荷优化分配方法研究[J]. 电站系统工程, 2018, 34(1): 9-11, 15 XIANG Qunyang, XIANG Wenjie, HUA Min, et al. Research on load dispatching of 660 MW power plant under low load operation[J]. Power System Engineering, 2018, 34(1): 9-11, 15 |