[1] PACYNA E G, PACYNA J M, SUNDSETH K, et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020[J]. Atmospheric Environment, 2010, 44(20):2487-2499. [2] PARK K S, SEO Y C, LEE S J, et al. Emission and speciation of mercury from various combustion sources[J]. Powder Technology, 2008, 180(1/2):151-156. [3] KOCMAN D, HORVAT M, PIRRONE N, et al. Contribution of contaminated sites to the global mercury budget[J]. Environmental Research, 2013, 125:160-170. [4] XU M, YAN R, ZHENG C, et al. Status of trace element emission in a coal combustion process:a review[J]. Fuel Processing Technology, 2004, 85(2):215-237. [5] KIM J, PARK J, LEE S, et al. Anthropogenic mercury emission inventory with emission factors and total emission in Korea[J]. Atmospheric Environment, 2010, 44(23):2714-2721. [6] WU Y, WANG S, STREETS D G, et al. Trends in anthropogenic mercury emissions in China from 1995 to 2003[J]. Environmental Science & Technology, 2006, 40(17):5312-5318. [7] ROMANOV A, SLOSS L, JOZEWICZ W. Mercury emissions from the coal-fired energy generation sector of the Russian Federation[J]. Energy & Fuels, 2012, 26(8):4647-4654. [8] GAO J, WANG H, CAI W, et al. Pollution characteristics of atmospheric particulate mercury near a coal-fired power plant on the southeast coast of China[J]. Atmospheric Pollution Research, 2016, 7(6):1119-1127. [9] TANG S, WANG L, FENG X, et al. Actual mercury speciation and mercury discharges from coal-fired power plants in Inner Mongolia, northern China[J]. Fuel, 2016, 180:194-204. [10] GAO Y, ZHANG Z, WU J, et al. A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases[J]. Environmental Science & Technology, 2013, 47(19):10813-10823. [11] SRIVASTAVA R K, HUTSON N, MARTIN B, et al. Control of mercury emissions from coal-fired electric utility boilers[J]. Environmental Science & Technology, 2006, 40(5):1385-1393. [12] LAUDAL D L, PAVLISH J H, GALBREATH K C, et al. Pilot-scale evaluation of the impact of selective catalytic reduction for NOx on mercury speciation[R]. North Dakota:Energy & Environmental Research Center, University of North Dakota, 2000. [13] FERNÁNDEZ-MIRANDA N, LOPEZ-ANTON M A, DÍAZ-SOMOANO M, et al. Mercury oxidation in catalysts used for selective reduction of NOx (SCR) in oxy-fuel combustion[J]. Chemical Engineering Journal, 2016, 285:77-82. [14] HONG H, HAM S, KIM M H, et al. Characteristics of commercial selective catalytic reduction catalyst for the oxidation of gaseous elemental mercury with respect to reaction conditions[J]. Korean Journal of Chemical Engineering, 2010, 27(4):1117-1122. [15] HSI H, LEE H, HWANG J, et al. Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals[J]. Journal of the Air & Waste Management Association, 2010, 60(5):514-522. [16] WU C, CAO Y, DONG Z, et al. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler[J]. Journal of Environmental Sciences-China, 2010, 22(2):277-282. [17] XU W, WANG H, ZHOU X, et al. CuO/TiO2 catalysts for gas-phase Hg0 catalytic oxidation[J]. Chemical Engineering Journal, 2014, 243:380-385. [18] LI H, ZHU L, WU S, et al. Synergy of CuO and CeO2 combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere[J]. International Journal of Coal Geology, 2017, 170:69-76. [19] WANG T, LI C, ZHAO L, et al. The catalytic performance and characterization of ZrO2 support modification on CuO-CeO2/TiO2 catalyst for the simultaneous removal of Hg0 and NO[J]. Applied Surface Science, 2017, 400:227-237. [20] CHI G, SHEN B, YU R, et al. Simultaneous removal of NO and Hg0 over Ce-Cu modified V2O5/TiO2 based commercial SCR catalysts[J]. Journal of Hazardous Materials, 2017, 330:83-92. [21] LI H, WU S, WU C, et al. SCR Atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst[J]. Environmental Science & Technology, 2015, 49(12):7373-7379. [22] LI H, WU S, LI L, et al. CuO-CeO2/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation at low temperatures[J]. Catalysis Science & Technology, 2015, 5(12):5129-5138. [23] SHAN W, LIU F, HE H, et al. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Applied Catalysis B:Environmental, 2012, 115:100-106. [24] YANG Y, LIU J, ZHANG B, et al. Experimental and theoretical studies of mercury oxidation over CeO2-WO3/TiO2 catalysts in coal-fired flue gas[J]. Chemical Engineering Journal, 2017, 317:758-765. [25] LI H, LI Y, WU C, et al. Oxidation and capture of elemental mercury over SiO2-TiO2-V2O5 catalysts in simulated low-rank coal combustion flue gas[J]. Chemical Engineering Journal, 2011, 169(1/2/3):186-193. [26] CHEN C, JIA W, LIU S, et al. The enhancement of CuO modified V2O5-WO3/TiO2 based SCR catalyst for Hg0 oxidation in simulated flue gas[J]. Applied Surface Science, 2018, 436:1022-1029. [27] YAMAGUCHI A, AKIHO H, ITO S. Mercury oxidation by copper oxides in combustion flue gases[J]. Powder Technology, 2008, 180(1/2):222-226. [28] CHEN C, JIA W, LIU S, et al. Simultaneous NO removal and Hg0 oxidation over CuO doped V2O5-WO3/TiO2 catalysts in simulated coal-fired flue gas[J]. Energy & Fuels, 2018, 32(6):7025-7034. [29] ZHANG X, LI C, ZHAO L, et al. Simultaneous removal of elemental mercury and NO from flue gas by V2O5-CeO2/TiO2 catalysts[J]. Applied Surface Science, 2015, 347:392-400. [30] CHEN C, JIA W, LIU S, et al. Catalytic performance of CuCl2-modified V2O5-WO3/TiO2 catalyst for Hg0 oxidation in simulated flue gas[J]. Korean Journal of Chemical Engineering, 2018, 35(3):637-644. [31] LEE W, BAE G. Removal of elemental mercury (Hg0) by nanosized V2O5/TiO2 catalysts[J]. Environmental Science & Technology, 2009, 43(5):1522-1527. [32] PRESTO A A, GRANITE E J. Survey of catalysts for oxidation of mercury in flue gas[J]. Environmental Science & Technology, 2006, 40(18):5601-5609. [33] LI Y, MURPHY P D, WU C, et al. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas[J]. Environmental Science & Technology, 2008, 42(14):5304-5309. [34] LI H, WU C, LI Y, et al. Impact of SO2 on elemental mercury oxidation over CeO2-TiO2 catalyst[J]. Chemical Engineering Journal, 2013, 219:319-326. [35] LI H, WU C, LI Y, et al. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature[J]. Journal of Hazardous Materials, 2012, 243:117-123. [36] ZHANG X, LI Z, WANG J, et al. Reaction mechanism for the influence of SO2 on Hg0 adsorption and oxidation with Ce0.1-Zr-MnO2[J]. Fuel, 2017, 203:308-315. [37] ZHAO L, LI C, ZHANG J, et al. Promotional effect of CeO2 modified support on V2O5-WO3/TiO2 catalyst for elemental mercury oxidation in simulated coal-fired flue gas[J]. Fuel, 2015, 153:361-369. [38] CHEN C, JIA W, LIU S, et al. Mechanism of Hg0 oxidation in the presence of HCl over a CuCl2-modified SCR catalyst[J]. Journal of Materials Science, 2018, 53(14):10001-10012. [39] KIM M H, HAM S, LEE J. Oxidation of gaseous elemental mercury by hydrochloric acid over CuCl2/TiO2-based catalysts in SCR process[J]. Applied Catalysis B:Environmental, 2010, 99(1/2):272-278. [40] ZHOU J, HOU W, QI P, et al. CeO2-TiO2 sorbents for the removal of elemental mercury from syngas[J]. Environmental Science & Technology, 2013, 47(17):10056-10062. [41] FANG J, BI X, SI D, et al. Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides[J]. Applied Surface Science, 2007, 253(22):8952-8961. [42] HUANG W, XU H, QU Z, et al. Significance of Fe2O3 modified SCR catalyst for gas-phase elemental mercury oxidation in coal-fired flue gas[J]. Fuel Processing Technology, 2016, 149:23-28. [43] WANG P, SU S, XIANG J, et al. Catalytic oxidation of Hg0 by MnOx-CeO2/gamma-Al2O3 catalyst at low temperatures[J]. Chemosphere, 2014, 101:49-54. [44] QIAN K, QIAN Z, HUA Q, et al. Structure-activity relationship of CuO/MnO2 catalysts in CO oxidation[J]. Applied Surface Science, 2013, 273:357-363. [45] ZHANG Q, XU L, NING P, et al. Surface characterization studies of CuO-CeO2-ZrO2 catalysts for selective catalytic reduction of NO with NH3[J]. Applied Surface Science, 2014, 317:955-961. [46] SI Z, WENG D, WU X, et al. Synergistic effects between copper and tungsten on the structural and acidic properties of CuOx/WOx-ZrO2 catalyst[J]. Catalysis Science & Technology, 2011, 1(3):453-461. [47] BIESINGER M C, LAU L W M, GERSON A R, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides:Sc, Ti, V, Cu and Zn[J]. Applied Surface Science, 2010, 257(3):887-898. |