中国电力 ›› 2014, Vol. 47 ›› Issue (2): 156-160.DOI: 10.11930/j.issn.1004-9649.2014.2.156.4

• 电力规划 • 上一篇    

计及不确定性的配电网模糊优化重构

王海潮1, 周玲1, 丁晓群1, 陆晨2   

  1. 1. 河海大学 能源与电气学院,江苏 南京 211100;
    2. 南京市水利规划设计院,江苏 南京 210000
  • 收稿日期:2013-11-05 出版日期:2014-02-28 发布日期:2015-12-18
  • 作者简介:王海潮(1990-),男,江苏邳州人,硕士研究生,从事电力系统规划与运行控制研究。E-mail: haichaont@163.com

Fuzzy Optimization of Distribution Network Reconfiguration Considering Uncertainty

WANG Hai-chao1, ZHOU Ling1, DING Xiao-qun1, LU Chen2   

  1. 1. Energy and Electrical College, Hohai University, Nanjing 211100, China;
    2. Nanjing Water Planning and Designing Institute, Nanjing 210000, China
  • Received:2013-11-05 Online:2014-02-28 Published:2015-12-18

摘要: 实际配电网的负荷变化具有不确定性,使得配电网重构难以用传统的模型来描述。为此,提出根据负荷变化的模糊特性,建立以供电质量最优和网络损耗最小为目标的模糊化多目标配电网重构模型。采用量子进化算法对模型进行求解,以提高配电网络的经济性和供电质量;计算过程中采用支路前推回代法得到适应度函数的模糊区间,并通过区间评价函数进行模糊区间的比较来衡量方案的优劣。采用含分布式电源的IEEE33节点测试系统进行仿真计算,证明该方法的有效性。

关键词: 配电网重构, 模糊特性, 区间评价函数, 多目标函数, 量子进化算法

Abstract: There is uncertainty in load changes of actual distribution network leading to the difficulty of describing the distribution network reconfiguration in traditional models. This paper has built a fuzzy multi-objective distribution network reconfiguration model with the features of optimization of power supply quality and the minimization of network loss, which is based on the fuzzy speciality of the load change and used the quantum evolutionary algorithm(QEA) to find the best result in this model. By this way, it has improved the economy and power supply quality of the distribution network. The back/forward sweep method is used for getting the fuzzy interval of fitness function and balance the good points against the bad points by comparing the fuzzy interval, which is decided by the evaluation function of interval. The effectiveness of the method is verified through the simulation results of IEEE 33-node system with distributed generations.

Key words: distribution network reconfiguration, fuzzy speciality, evaluation function of interval, multi-objective function, quantum evolutionary algorithm

中图分类号: