中国电力 ›› 2024, Vol. 57 ›› Issue (10): 12-24, 35.DOI: 10.11930/j.issn.1004-9649.202403022
杜浩程1(), 李世龙2,4(
), 巨云涛3(
), 张晋奇5(
)
收稿日期:
2024-03-06
出版日期:
2024-10-28
发布日期:
2024-10-25
作者简介:
杜浩程(1995—),男,硕士,从事配电网运行与优化技术研究,E-mail:595523633@qq.com基金资助:
Haocheng DU1(), Shilong LI2,4(
), Yuntao JU3(
), Jinqi ZHANG5(
)
Received:
2024-03-06
Online:
2024-10-28
Published:
2024-10-25
Supported by:
摘要:
在大规模多时刻配电网重构(distribution network reconfiguration,DNR)问题中,大量待优化的开关严重降低了配电网重构的求解效率。针对此问题,提出了一种压缩开关候选集合的分布鲁棒配电网重构模型,该模型分为2个阶段,第1阶段以最小化系统有功网损为目标函数,使用最优匹配回路流法压缩开关候选集合,第2阶段以最小化取电成本和开关动作成本之和为目标函数,并构建以电源点容量为限值的机会约束,采用基于Wasserstein球的分布鲁棒方法处理分布式电源的不确定性,利用对偶转换方法对目标函数中的最坏情况期望和机会约束进行确定性转换,将模型转化为一个混合整数二阶锥规划问题。最后,对33节点和辽宁盘锦45节点系统进行了数值实验,证明了所提模型能够有效提升计算效率,与鲁棒模型和随机规划模型相比,决策者可以通过改变样本数量和置信度来调整模型的经济性和保守性。
杜浩程, 李世龙, 巨云涛, 张晋奇. 基于压缩开关候选集合的分布鲁棒配电网重构方法[J]. 中国电力, 2024, 57(10): 12-24, 35.
Haocheng DU, Shilong LI, Yuntao JU, Jinqi ZHANG. A Distributional Robust Distribution Network Reconfiguration Method Based on Compressed Switch Candidate Set[J]. Electric Power, 2024, 57(10): 12-24, 35.
回路 | 场景1(12:00) | 场景2(20:00) | 场景3(04:00) | 开关候 选集合 | ||||||||||
最小残留电流 (p.u.) | 开关 | 最小残留电流 (p.u.) | 开关 | 最小残留电流 (p.u.) | 开关 | |||||||||
1 | 7-8 | 6-7 | 6-7 | 6-7、7-8、6-26、26-27、30-31、32-33、8-9、11-12、12-22、13-14、14-15 | ||||||||||
2 | 26-27 | 6-26 | 26-27 | |||||||||||
3 | 32-33 | 30-31 | 30-31 | |||||||||||
4 | 12-22 | 11-12 | 8-9 | |||||||||||
5 | 13-14 | 13-14 | 14-15 |
表 1 33节点系统常规场景下的压缩开关候选集合
Table 1 Candidate set of compressed switches for regular scenarios of 33 node system
回路 | 场景1(12:00) | 场景2(20:00) | 场景3(04:00) | 开关候 选集合 | ||||||||||
最小残留电流 (p.u.) | 开关 | 最小残留电流 (p.u.) | 开关 | 最小残留电流 (p.u.) | 开关 | |||||||||
1 | 7-8 | 6-7 | 6-7 | 6-7、7-8、6-26、26-27、30-31、32-33、8-9、11-12、12-22、13-14、14-15 | ||||||||||
2 | 26-27 | 6-26 | 26-27 | |||||||||||
3 | 32-33 | 30-31 | 30-31 | |||||||||||
4 | 12-22 | 11-12 | 8-9 | |||||||||||
5 | 13-14 | 13-14 | 14-15 |
回路 | 场景4(16:00) | 场景5(06:00) | 开关候选集合 | |||||||
最小残留电流 (p.u.) | 开关 | 最小残留电流 (p.u.) | 开关 | |||||||
1 | 6-7 | 6-7 | 6-7、26-27、27-28、32-33、30-31、11-12、13-14 | |||||||
2 | 27-28 | 26-27 | ||||||||
3 | 32-33 | 30-31 | ||||||||
4 | 11-12 | 11-12 | ||||||||
5 | 13-14 | 13-14 |
表 2 33节点系统极端场景下的压缩开关候选集合
Table 2 Candidate set of compressed switches for extreme scenarios of 33 node system
回路 | 场景4(16:00) | 场景5(06:00) | 开关候选集合 | |||||||
最小残留电流 (p.u.) | 开关 | 最小残留电流 (p.u.) | 开关 | |||||||
1 | 6-7 | 6-7 | 6-7、26-27、27-28、32-33、30-31、11-12、13-14 | |||||||
2 | 27-28 | 26-27 | ||||||||
3 | 32-33 | 30-31 | ||||||||
4 | 11-12 | 11-12 | ||||||||
5 | 13-14 | 13-14 |
方法 | 成本/ 千元 | 计算时 间/s | 打开过的开关 | |||
经过压缩 | 923 | 6-7、11-12、13-14、 26-27、30-31、32-33 | ||||
未经压缩 | 6-7、11-12、13-14、 26-27、30-31、32-33 |
表 3 33节点开关集合压缩前后重构结果
Table 3 Reconfiguration results before and after compression of 33 node switch set
方法 | 成本/ 千元 | 计算时 间/s | 打开过的开关 | |||
经过压缩 | 923 | 6-7、11-12、13-14、 26-27、30-31、32-33 | ||||
未经压缩 | 6-7、11-12、13-14、 26-27、30-31、32-33 |
参数 | 不同优化模型下的成本/千元 | |||||||
RO | DRO | SP | CM | |||||
表 4 33节点系统中参数对模型结果的影响
Table 4 Effect of parameters in 33 node system on optimization results of models
参数 | 不同优化模型下的成本/千元 | |||||||
RO | DRO | SP | CM | |||||
回路 | 场景1(12:00) | 场景2(20:00) | 场景3(04:00) | 开关候选集合 | ||||||||||
最小残留 电流(p.u.) | 开关 | 最小残留 电流(p.u.) | 开关 | 最小残留 电流(p.u.) | 开关 | |||||||||
1 | 4-5 | 4-5 | 4-5 | 4-5、5-6、7-8、23-26、26-27、18-38、18-19、19-20、16-17 | ||||||||||
6 | 5-6 | 7-8 | 5-6 | |||||||||||
10 | 23-26 | 26-27 | 23-26 | |||||||||||
13 | 18-38 | 16-17 | 18-38 | |||||||||||
15 | 18-19 | 19-20 | 18-19 |
表 5 辽宁盘锦45节点系统常规场景下的压缩开关候选集合
Table 5 Candidate set of compressed switches for regular scenarios of Liaoning Panjin 45 node system
回路 | 场景1(12:00) | 场景2(20:00) | 场景3(04:00) | 开关候选集合 | ||||||||||
最小残留 电流(p.u.) | 开关 | 最小残留 电流(p.u.) | 开关 | 最小残留 电流(p.u.) | 开关 | |||||||||
1 | 4-5 | 4-5 | 4-5 | 4-5、5-6、7-8、23-26、26-27、18-38、18-19、19-20、16-17 | ||||||||||
6 | 5-6 | 7-8 | 5-6 | |||||||||||
10 | 23-26 | 26-27 | 23-26 | |||||||||||
13 | 18-38 | 16-17 | 18-38 | |||||||||||
15 | 18-19 | 19-20 | 18-19 |
回路 | 场景4(16:00) | 场景5(06:00) | 开关候选集合 | |||||||
最小残留电流 (p.u.) | 开关 | 最小残留电流 (p.u.) | 开关 | |||||||
1 | 4-5 | 4-5 | 4-5、 5-6、6-7、23-26、26-27、18-38、 18-19 | |||||||
6 | 6-7 | 5-6 | ||||||||
10 | 23-26 | 26-27 | ||||||||
13 | 18-38 | 18-38 | ||||||||
15 | 18-19 | 18-19 |
表 6 辽宁盘锦45节点系统极端场景下的压缩开关候选集合
Table 6 Candidate set of compressed switches for extreme scenarios of Liaoning Panjin 45 node system
回路 | 场景4(16:00) | 场景5(06:00) | 开关候选集合 | |||||||
最小残留电流 (p.u.) | 开关 | 最小残留电流 (p.u.) | 开关 | |||||||
1 | 4-5 | 4-5 | 4-5、 5-6、6-7、23-26、26-27、18-38、 18-19 | |||||||
6 | 6-7 | 5-6 | ||||||||
10 | 23-26 | 26-27 | ||||||||
13 | 18-38 | 18-38 | ||||||||
15 | 18-19 | 18-19 |
方法 | 成本/ 元 | 计算时 间/s | 打开过的开关 | |||
经过压缩 | 4-5、5-6、7-8、 16-17、18-19、19-20、23-26、26-27、18-38 | |||||
未经压缩 | 4-5、5-6、7-8、 16-17、18-19、19-20、23-26、26-27、18-38 |
表 7 辽宁盘锦45节点系统开关集合压缩前后重构结果
Table 7 Reconfiguration results before and after compression of Liaoning Panjin 45 node system switch set
方法 | 成本/ 元 | 计算时 间/s | 打开过的开关 | |||
经过压缩 | 4-5、5-6、7-8、 16-17、18-19、19-20、23-26、26-27、18-38 | |||||
未经压缩 | 4-5、5-6、7-8、 16-17、18-19、19-20、23-26、26-27、18-38 |
参数 | 不同优化模型下的成本/千元 | |||||||
RO | DRO | SP | CM | |||||
表 8 辽宁盘锦45节点系统中参数对模型结果的影响
Table 8 Effect of parameters in Liaoning Panjin 45 node system on optimization results of models
参数 | 不同优化模型下的成本/千元 | |||||||
RO | DRO | SP | CM | |||||
时段 | 断开的开关 | |||
CM | DRO | |||
4-5, 5-6, 18-19, 18-38, 26-27 | 4-5, 5-6, 18-19, 18-38, 26-27 | |||
4-5, 6-7, 18-19, 18-38, 23-26 | 4-5, 5-6, 18-19, 18-38, 26-27 | |||
4-5, 7-8, 18-19, 16-17, 26-27 | 4-5, 7-8, 18-19, 16-17, 26-27 | |||
4-5, 5-6, 19-20, 18-38, 23-26 | 4-5, 6-7, 19-20, 18-38, 23-26 |
表 9 开关动作变化
Table 9 Switch action change
时段 | 断开的开关 | |||
CM | DRO | |||
4-5, 5-6, 18-19, 18-38, 26-27 | 4-5, 5-6, 18-19, 18-38, 26-27 | |||
4-5, 6-7, 18-19, 18-38, 23-26 | 4-5, 5-6, 18-19, 18-38, 26-27 | |||
4-5, 7-8, 18-19, 16-17, 26-27 | 4-5, 7-8, 18-19, 16-17, 26-27 | |||
4-5, 5-6, 19-20, 18-38, 23-26 | 4-5, 6-7, 19-20, 18-38, 23-26 |
样本容量 | 计算时间/s | |
100 | 239 | |
300 | 232 | |
500 | 242 | |
700 | 245 |
表 10 样本容量对计算性能的影响
Table 10 Effect of sample sizes on computational performance
样本容量 | 计算时间/s | |
100 | 239 | |
300 | 232 | |
500 | 242 | |
700 | 245 |
1 |
ZHAN J P, LIU W J, CHUNG C Y, et al. Switch opening and exchange method for stochastic distribution network reconfiguration[J]. IEEE Transactions on Smart Grid, 2020, 11 (4): 2995- 3007.
DOI |
2 |
翟鹤峰, 杨明, 赵利刚, 等. 提升分布式电源接纳能力的配电网三相鲁棒动态重构[J]. 电力系统自动化, 2019, 43 (18): 35- 42.
DOI |
ZHAI Hefeng, YANG Ming, ZHAO Ligang, et al. Three-phase robust dynamic reconfiguration of distribution network to improve acceptance ability of distributed generator[J]. Automation of Electric Systems, 2019, 43 (18): 35- 42.
DOI |
|
3 |
ZHOU A P, ZHAI H F, YANG M, et al. Three-phase unbalanced distribution network dynamic reconfiguration: a distributionally robust approach[J]. IEEE Transactions on Smart Grid, 2022, 13 (3): 2063- 2074.
DOI |
4 |
LI Z C, JAZEBI S, DE LEÓN F. Determination of the optimal switching frequency for distribution system reconfiguration[J]. IEEE Transactions on Power Delivery, 2017, 32 (4): 2060- 2069.
DOI |
5 | 赵静翔, 牛焕娜, 王钰竹. 基于信息熵时段划分的主动配电网动态重构[J]. 电网技术, 2017, 41 (2): 402- 408. |
ZHAO Jingxiang, NIU Huanna, WANG Yuzhu. Dynamic reconfiguration of active distribution network based on information entropy of time intervals[J]. Power System Technology, 2017, 41 (2): 402- 408. | |
6 | WANG Q F, GUAN Y P, WANG J H. A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output[C]//2012 IEEE Power and Energy Society General Meeting. San Diego, CA, USA. IEEE, 2012: 1. |
7 | AHMED H M A, ELTANTAWY A B, SALAMA M M A. A planning approach for the network configuration of AC-DC hybrid distribution systems[J]. IEEE Transactions on Smart Grid, 2018, 9 (3): 2203- 2213. |
8 |
LEE C, LIU C, MEHROTRA S, et al. Robust distribution network reconfiguration[J]. IEEE Transactions on Smart Grid, 2015, 6 (2): 836- 842.
DOI |
9 |
HAGHIGHAT H, ZENG B. Distribution system reconfiguration under uncertain load and renewable generation[J]. IEEE Transactions on Power Systems, 2016, 31 (4): 2666- 2675.
DOI |
10 |
LEI S B, HOU Y H, QIU F, et al. Identification of critical switches for integrating renewable distributed generation by dynamic network reconfiguration[J]. IEEE Transactions on Sustainable Energy, 2018, 9 (1): 420- 432.
DOI |
11 |
AKRAMI A, DOOSTIZADEH M, AMINIFAR F. Optimal reconfiguration of distribution network using μPMU measurements: a data-driven stochastic robust optimization[J]. IEEE Transactions on Smart Grid, 2020, 11 (1): 420- 428.
DOI |
12 |
MAHDAVI M, ALHELOU H H, HESAMZADEH M R. An efficient stochastic reconfiguration model for distribution systems with uncertain loads[J]. IEEE Access, 2022, 10, 10640- 10652.
DOI |
13 |
MAHDAVI M, ALHELOU H H, SIANO P, et al. Robust mixed-integer programing model for reconfiguration of distribution feeders under uncertain and variable loads considering capacitor banks, voltage regulators, and protective relays[J]. IEEE Transactions on Industrial Informatics, 2022, 18 (11): 7790- 7803.
DOI |
14 |
HAJEBRAHIMI A, KAMWA I, ABDELAZIZ M M A, et al. Scenario-wise distributionally robust optimization for collaborative intermittent resources and electric vehicle aggregator bidding strategy[J]. IEEE Transactions on Power Systems, 2020, 35 (5): 3706- 3718.
DOI |
15 | 马望, 高红均, 杨艳红, 等. 融入重构级别快速识别的配电网两阶段优化运行[J]. 中国电机工程学报, 2022, 42 (14): 5154- 5168. |
MA Wang, GAO Hongjun, YANG Yanhong, et al. Two-stage optimal operation for distribution network based on fast identification of reconfiguration level[J]. Proceedings of the CSEE, 2022, 42 (14): 5154- 5168. | |
16 |
税月, 刘俊勇, 高红均, 等. 考虑风电不确定性的电气能源系统两阶段分布鲁棒协同调度[J]. 电力系统自动化, 2018, 42 (13): 43- 50, 75.
DOI |
SHUI Yue, LIU Junyong, GAO Hongjun, et al. Two-stage distributed robust cooperative dispatch for integrated electricity and natural gas energy systems considering uncertainty of wind power[J]. Automation of Electric Power Systems, 2018, 42 (13): 43- 50, 75.
DOI |
|
17 |
ZHENG W Y, HUANG W J, HILL D J, et al. An adaptive distributionally robust model for three-phase distribution network reconfiguration[J]. IEEE Transactions on Smart Grid, 2021, 12 (2): 1224- 1237.
DOI |
18 |
CHEN Y W, GUO Q L, SUN H B, et al. A distributionally robust optimization model for unit commitment based on kullback–leibler divergence[J]. IEEE Transactions on Power Systems, 2018, 33 (5): 5147- 5160.
DOI |
19 |
ZHOU A P, YANG M, WANG M Q, et al. A linear programming approximation of distributionally robust chance-constrained dispatch with Wasserstein distance[J]. IEEE Transactions on Power Systems, 2020, 35 (5): 3366- 3377.
DOI |
20 | 竺如洁, 韦化, 白晓清. 多源动态最优潮流的分布鲁棒优化方法[J]. 中国电机工程学报, 2020, 40 (11): 3489- 3497. |
ZHU Rujie, WEI Hua, BAI Xiaoqing. Distributionally robust optimization of multi-energy dynamic optimal power flow[J]. Proceedings of the CSEE, 2020, 40 (11): 3489- 3497. | |
21 | 曾捷, 童晓阳, 范嘉乐. 计及需求响应不确定性的电-气耦合配网系统动态分布鲁棒优化[J]. 电网技术, 2022, 46 (5): 1877- 1886. |
ZENG Jie, TONG Xiaoyang, FAN Jiale. Dynamic distributionally robust optimization of integrated electric-gas distribution system considering demand response uncertainty[J]. Power System Technology, 2022, 46 (5): 1877- 1886. | |
22 |
CHEN Y, WEI W, LIU F, et al. Distributionally robust hydro-thermal-wind economic dispatch[J]. Applied Energy, 2016, 173, 511- 519.
DOI |
23 |
WANG Z, BIAN Q Y, XIN H H, et al. A distributionally robust co-ordinated reserve scheduling model considering CVaR-based wind power reserve requirements[J]. IEEE Transactions on Sustainable Energy, 2016, 7 (2): 625- 636.
DOI |
24 |
ZHOU Y Z, SHAHIDEHPOUR M, WEI Z N, et al. Distributionally robust co-optimization of energy and reserve for combined distribution networks of power and district heating[J]. IEEE Transactions on Power Systems, 2020, 35 (3): 2388- 2398.
DOI |
25 |
WANG XIAOLU, YUEN-MAN PUN, ANTHONY MAN-CHO SO. Moment uncertainty[J]. IEEE Transactions on Signal Processing, 2022, 70, 6216- 6231.
DOI |
26 | HAO B, CAI K Q, FANG Y P, et al. A moment-based distributionally robust optimization model for air traffic flow management[C]//2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC). San Antonio, TX, USA. IEEE, 2021: 1-7. |
27 |
ZHU R J, WEI H, BAI X Q. Wasserstein metric based distributionally robust approximate framework for unit commitment[J]. IEEE Transactions on Power Systems, 2019, 34 (4): 2991- 3001.
DOI |
28 |
ZHAO C Y, GUAN Y P. Data-driven risk-averse stochastic optimization with Wasserstein metric[J]. Operations Research Letters, 2018, 46 (2): 262- 267.
DOI |
29 | MOHAJERIN ESFAHANI P, KUHN D. Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations[J]. Mathematical Programming, 2018, 171 (1): 115- 166. |
30 | ZYMLER S, KUHN D, RUSTEM B. Distributionally robust joint chance constraints with second-order moment information[J]. Mathematical Programming, 2013, 137 (1): 167- 198. |
31 |
SHI Z C, LIANG H, HUANG S J, et al. Distributionally robust chance-constrained energy management for islanded microgrids[J]. IEEE Transactions on Smart Grid, 2019, 10 (2): 2234- 2244.
DOI |
32 | 蔡智萍, 郭谋发, 魏正峰. 基于BP神经网络的低压配电网生命体触电识别方法研究[J]. 电网技术, 2022, 46 (4): 1614- 1623. |
CAI Zhiping, GUO Moufa, WEI Zhengfeng. Research on recognition method of living body shock in low-voltage distribution network based on BP neural network[J]. Power System Technology, 2022, 46 (4): 1614- 1623. |
[1] | 翟苏巍, 李银银, 杜凡, 李文云, 潘凯岩, 梁峻恺. 考虑海量分布式能源接入的配电网分布式无功控制策略[J]. 中国电力, 2024, 57(8): 138-144. |
[2] | 齐彩娟, 陈宝生, 韦冬妮, 杨钊. 考虑主从博弈定价模式的共享储能分布鲁棒优化配置方法研究[J]. 中国电力, 2024, 57(7): 40-53. |
[3] | 刘志伟, 马悦, 沙志成, 邵云姝, 牛远方, 董晓明, 王成福. 考虑新能源多重相关性的柔性配电网分布鲁棒优化策略[J]. 中国电力, 2024, 57(12): 97-108. |
[4] | 张颖, 文艳, 季宇, 左娟, 王文博. 基于目标级联法的虚拟电厂日前调频容量计算方法[J]. 中国电力, 2024, 57(1): 82-90. |
[5] | 齐彩娟, 车彬, 杨燕, 陈宝生. 考虑新能源消纳与储能参与调频的共享储能主从博弈鲁棒定价方法[J]. 中国电力, 2023, 56(8): 26-39. |
[6] | 姚力, 郑海峰, 单葆国, 谭显东, 许传龙, 徐志成. 基于数据驱动机会约束的发电企业电煤采购及库存优化模型[J]. 中国电力, 2023, 56(6): 176-184. |
[7] | 于艾清, 丁丽青, 王育飞, 李豪. 基于故障邻接状态的配电网多故障抢修与优化策略[J]. 中国电力, 2023, 56(3): 64-76. |
[8] | 李强, 王尧, 胡迎迎, 郑晓明, 张琳娜, 荆永明. 考虑碳交易成本的输储多阶段协调规划方法[J]. 中国电力, 2023, 56(12): 199-205. |
[9] | 冯凯辉, 闫湖, 戴吴珍, 陈健, 刘永亮. 计及能源利用效率的含生物质沼气发电农村能源系统优化运行[J]. 中国电力, 2022, 55(7): 172-178. |
[10] | 吴强, 韩俊, 金颋, 蔡超, 孟诗语, 殷俊平. 冷热电联供型孤岛微电网环保经济调度模型[J]. 中国电力, 2021, 54(12): 137-142. |
[11] | 沈依婷, 张菁, 武鹏, 柳璐, 杨建林. 含电动汽车的配电网双重不确定性网架规划方法[J]. 中国电力, 2020, 53(4): 139-146. |
[12] | 赵楠, 王蓓蓓. 计及多类型需求响应资源的配电网分布式电源优化配置[J]. 中国电力, 2019, 52(11): 51-59,67. |
[13] | 高元海,王淳. 基于八种智能算法的配电网络重构计算平台及其性能[J]. 中国电力, 2015, 48(8): 53-60. |
[14] | 张新松, 顾菊平, 郭晓丽. 基于离散概率潮流的大风电接入后的电网规划[J]. 中国电力, 2014, 47(4): 128-133. |
[15] | 王海潮, 周玲, 丁晓群, 陆晨. 计及不确定性的配电网模糊优化重构[J]. 中国电力, 2014, 47(2): 156-160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||