中国电力 ›› 2013, Vol. 46 ›› Issue (11): 8-11.DOI: 10.11930/j.issn.1004-9649.2013.11.8.3

• 电网 • 上一篇    下一篇

基于改进人工鱼群算法的含大规模风电电网无功优化

徐鹏1, 刘文颖1, 赵子兰1, 李波1, 汪宁渤2   

  1. 1. 华北电力大学 电气与电子工程学院,北京 102206; 2. 甘肃省电力公司 风电技术中心,甘肃 兰州 730050
  • 收稿日期:2013-06-27 出版日期:2013-11-23 发布日期:2015-12-10
  • 作者简介:徐鹏(1987—),男,山东潍坊人,博士研究生,从事电力系统分析、运行与控制等方面的研究工作。
  • 基金资助:
    2011年国家高科技研究发展计划(863计划)资助项目(2011AA05A104)

Reactive Voltage Optimization of a Complex Power Grid Integrated with Large-Scale Wind Power by Improved Artificial Fish Swarm Algorithm (AFSA)

XU Peng1, LIU Wen-ying1, ZHAO Zi-lan1, LI Bo1, WANG Ning-bo2   

  1. 1. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China; 2. Wind Power Center of Gansu Power Grid, Lanzhou 730050, China
  • Received:2013-06-27 Online:2013-11-23 Published:2015-12-10

摘要: 针对大规模风电的波动性和随机性对电网无功电压优化初值影响较大,使无功优化求解不能充分考虑电压越限节点,而过早收敛,最终不能得到全局最优解的问题,提出基于改进人工鱼群算法对含大规模风电的复杂电网进行无功电压优化。在算法流程初期将类似遗传算法的变异机制引入其中,用以优化调整人工鱼群,在算法流程后期应用自适应可见域及步长的方法解决人工鱼群算法计算后期容易出现的陷入局部最优解以及收敛速度慢的问题。最后以接入大规模风电的甘肃电网为例,应用常规输电网动态无功优化模型,对文中的改进人工鱼群算法进行实例验证,从而证明算法的可行性和有效性。

关键词: 大规模风电并网, 改进人工鱼群算法, 电压波动, 无功电压优化

Abstract: Large-scale wind power fluctuations and randomness have significant impact on the initial values of reactive power and voltage optimization, and, as a result, the solution process of reactive power optimization cannot take full account of the voltage-limit nodes with a rather premature convergence and cannot be the optimal solution. So, an improved artificial fish swarm algorithm(AFSA) is proposed to solve the var optimization problem of a gird with integration of large scale wind power. In the initial stage of algorithm process, the mutation mechanism is introduced to regulate the artificial fish-swarm. Meanwhile, in the later stage, the self-adaptive VISUAL and STEP are used to avoid the problems of local optimal solution and slow convergence which are common in the later computation stage. Finally, the GANSU grid is used for case study, which proves the feasibility and effectiveness of the proposed algorithm.

Key words: large-scale wind power, improved artificial fish swarm algorithm, voltage fluctuations, reactive power and voltage optimization

中图分类号: