[1] 彭向阳, 詹清华, 周华敏. 广东电网同塔多回线路雷击跳闸影响因素及故障分析[J]. 电网技术, 2012, 36(3): 81–87 PENG Xiangyang, ZHAN Qinghua, ZHOU Huamin. Influencing factors of lightning outage in multi-circuit transmission lines on same tower in Guangdong power grid and fault analysis[J]. Power System Technology, 2012, 36(3): 81–87 [2] 刘刚, 唐军, 孙雷雷, 等. 不同地形地貌的雷电流幅值概率分布对输电线路雷击跳闸的影响[J]. 高电压技术, 2013, 39(1): 17–23 LIU Gang, TANG Jun, SUN Leilei, et al. Influence of the distribution of lightning current amplitude in different landforms on the transmission-line's tripping operation[J]. High Voltage Engineering, 2013, 39(1): 17–23 [3] 隋彬. 500 kV超高压输电线路耐雷水平影响因素研究[D]. 成都: 西南交通大学, 2011. SUI Bin. Influence factors study on the lightning withstand level of500 kV EHVAC transmission lines[D]. Chengdu: Southwest Jiaotong University, 2011. [4] 赵淳, 阮江军, 李晓岚, 等. 输电线路综合防雷措施技术经济性评估[J]. 高电压技术, 2011, 37(2): 290–297 ZHAO Chun, RUAN Jiangjun, LI Xiaolan, et al. Technology and economy evaluation of comprehensive transmission line lightning protection measures[J]. High Voltage Engineering, 2011, 37(2): 290–297 [5] 陈家宏, 吕军, 钱之银, 等. 输电线路差异化防雷技术与策略[J]. 高电压技术, 2009, 35(2): 2891–2902 CHEN Jiahong, LU Jun, QIAN Zhiyin, et al. Differentiation technology and strategy of lightning protection for transmission lines[J]. High Voltage Engineering, 2009, 35(2): 2891–2902 [6] 夏亮,杨江平,邓斌,等. 雷达站电源综合防雷系统研究与设计[J]. 电力系统保护与控制, 2019, 47(16): 143–150 XIA Liang, YANG Jiangping, DENG Bin, et al. Study and design of comprehensive lightning protection system for power supply of radar station[J]. Power System Protection and Control, 2019, 47(16): 143–150 [7] 陈家宏, 赵淳, 王剑, 等. 基于直接获取雷击参数的输电线路雷击风险优化评估方法[J]. 高电压技术, 2015, 41(1): 14–20 CHEN Jiahong, ZHAO Chun, WANG Jian, et al. Optimal lightning risk assessment method of transmission line based on direct acquisition of lightning stroke parameter[J]. High Voltage Engineering, 2015, 41(1): 14–20 [8] 张波,张勇,刘政强,等. 国网山东电力北斗地基增强系统建设方案及应用[J]. 电力系统保护与控制, 2020, 48(3): 70–76 ZHANG Bo, ZHANG Yong, LIU Zhengqiang, et al. Construction scheme and application of BDS ground-based augmentation system of State Grid Shandong Electric Power[J]. Power System Protection and Control, 2020, 48(3): 70–76 [9] 赵淳, 阮江军, 陈家宏, 等. 三维激光扫描技术在输电线路差异化防雷治理中的应用[J]. 电网技术, 2012, 36(1): 195–200 ZHAO Chun, RUAN Jiangjun, CHEN Jiahong, et al. Application of three dimensional laser scanning technology in differentiated lightning protection for transmission lines[J]. Power System Technology, 2012, 36(1): 195–200 [10] 李阳林, 徐宁, 李帆, 等. 特高压直流输电线路雷击故障原因分析与防范[J]. 中国电力, 2018, 51(1): 59–63 LI Yanglin, XU Ning, LI Fan. Analysis and prevention of the lightning fault of UHV DC transmission lines[J]. Electric Power, 2018, 51(1): 59–63 [11] 雷梦飞, 王少华, 刘黎, 等. 特高压直流输电线路雷击故障特性分析[J]. 电瓷避雷器, 2019(3): 57–62 LEI Mengfei, WANG Shaohua, LIU Li, et al. Analysis on lightning fault characteristics of UHVDC transmission line[J]. Insulators and Surge Arresters, 2019(3): 57–62 [12] 赵淳, 陈家宏, 王剑, 等. 电网雷害风险评估技术研究[J]. 高电压技术, 2011, 37(12): 3012–3021 ZHAO Chun, CHEN Jiahong, WANG Jian, et al. Research on technology of lightning disaster risk assessment for power system[J]. High Voltage Engineering, 2011, 37(12): 3012–3021 [13] 席燕辉, 胡康, 王康. 基于自适应卡尔曼滤波残差分析的雷击故障定位[J]. 电力系统保护与控制, 2020, 48(23): 30–39 XI Yanhui, HU Kang, WANG Kang. Lightning strike fault location based on adaptive Kalman filter residual analysis[J]. Power System Protection and Control, 2020, 48(23): 30–39 [14] 吕哲, 王增平. 基于暂态波形特征的输电线路雷击干扰与故障识别方法[J]. 电力系统保护与控制, 2020, 48(6): 18–26 LV Zhe, WANG Zengping. Identification of lightning strike disturbance and faults for transmission line based on transient waveform characteristics[J]. Power System Protection and Control, 2020, 48(6): 18–26 [15] 孙沛瑶, 林圣, 刘磊, 等. 融合行波时频信息的HVDC线路雷击点与短路故障点不一致时的定位方法[J]. 电力系统保护与控制, 2019, 47(5): 88–95 SUN Peiyao, LIN Sheng, LIU Lei, et al. Location method for HVDC transmission line under lightning stoke fault with short-circuit fault position different from lighting position based on time-domain and frequency-domain information of traveling waves[J]. Power System Protection and Control, 2019, 47(5): 88–95 [16] 中国气象局. 雷电灾害风险评估技术规范: QX/T-85—2018[S]. 北京: 中国气象出版社, 2019. [17] 余蜀豫. 雷电风险评估方法和参数研究及实践[D]. 南京: 南京信息工程大学, 2012. YU Shuyu. Research and application of lightning risk assessment parameters and methods[D]. Nanjing: Nanjing University of Information Science & Technology, 2012. [18] SAATY T L. The analytic hierarchy process[M]. New York: McGraw Hill, 1980 [19] 周羽生, 刘超智, 周顺. 基于可拓层次分析法的500 kV线路防雷改造措施综合评估[J]. 电瓷避雷器, 2018(5): 1–6,12 ZHOU Yusheng, LIU Chaozhi, ZHOU Shun. Comprehensive evaluation of lightning protection retrofitting measures for 500 kV transmission line based on extension analytic hierarchy process[J]. Insulators and Surge Arresters, 2018(5): 1–6,12 [20] 朱奇. 基于多因素权重分析的输电线路灾害预警评估模型研究[D]. 武汉: 武汉大学, 2018. ZHU Qi. Research on early warning assessment model of transmission line disaster based on multi-factor weight analysis[D]. Wuhan: Wuhan University, 2018. [21] 赵伟, 童杭伟, 史海锋. 基于杆塔的雷击跳闸风险评估[J]. 高压电器, 2017, 53(8): 134–139 ZHAO Wei, TONG Hangwei, SHI Haifeng. Risk assessment of lightning trip-out based on power transmission tower[J]. High Voltage Apparatus, 2017, 53(8): 134–139 [22] 赵伟, 李哲, 史海锋, 等. 基于层次分析法的浙江电网雷击跳闸孕灾环境敏感性评估[J]. 高电压技术, 2017, 43(2): 619–626 ZHAO Wei, LI Zhe, SHI Haifeng, et al. Sensitivity assessment on hazard-pregnant environment of lightning trip-out in Zhejiang power grid based on analytic hierarchy process model[J]. High Voltage Engineering, 2017, 43(2): 619–626 [23] 徐泽水, 马振明. 基于模糊逻辑代数的判断矩阵及其群体决策方法[M]. 北京: 科学出版社, 2020. [24] 巩在武. 不确定模糊判断矩阵原理、方法与应用[M]. 北京: 科学出版社, 2011. [25] 谢从珍, 白剑锋, 王红斌, 等. 基于多维关联信息融合的架空输电线路雷害风险评估方法[J]. 中国电机工程学报, 2018, 38(21): 6233–6244 XIE Congzhen, BAI Jianfeng, WANG Hongbin, et al. Lightning Risk Assessment of Transmission Lines Based on Multidimensional Related Information Fusion[J]. Proceedings of the CSEE, 2018, 38(21): 6233–6244 [26] 国家电网公司. 架空输电线路防雷导则: Q/GDW 11452—2015 [S]. 2015. [27] 国家电网公司. ±1 100 kV直流架空输电线路设计规范: Q/GDW 11675—2017 [S]. 2017. [28] 中国电力企业联合会. 交流电气装置的过电压保护和绝缘配合设计规范: GB/T 50064—2014 [S]. 北京: 中国计划出版社, 2014.
|